Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Gedächtnis auf der Spur

19.12.2003


Max-Planck-Neurowissenschaftler haben Proteine in Nervenzellen entdeckt, die sowohl Sender als auch Empfänger sein können


Hippokampus mit einem Teil seiner Schaltkreise. Jene Areale des Hippokampus, die eine hohe EphrinB-Expression zeigen, sind dunkelblau gefärbt. Situation A: Ein EphrinB-negatives, präsynaptisches Neuron (weiß) bildet eine Synapse mit einem EphrinB-positiven, postsynaptischen Neuron (pink). Situation B: Das EphrinB-negative Neuron (weiß) ist gleichzeitig postsynaptisch tätig für eine anderes Neuron aus einem Areal, in dem sich vorwiegend EphrinB-positive, präsynaptische Neurone befinden.
Bild: Max-Planck-Institut für Neurobiologie



Unser Gehirn ist ’plastisch’ - es kann sich fortlaufend verändern und an die Stärke von Reizen anpassen. Wissenschaftler des Max-Planck-Instituts für Neurobiologie haben jetzt eine neue Perspektive eröffnet, diese Plastizität des Gehirns zu verstehen. Sie haben erstmals entdeckt, dass eine bestimmte Kombination aus Liganden- und Rezeptorproteinen, die eine wichtige Rolle bei der Plastizität der Verbindungen zwischen Nervenzellen spielt, in ihrer Signalrichtung auch umgekehrt funktionieren kann. Proteine aus der Familie der Ephrine, denen man bisher eine eher passive Rolle als Signalgeber zugerechnet hatte, funktionieren in bestimmten Nervenzellen als Rezeptoren, also Empfänger. Diese neuen Erkenntnisse lassen vermuten, dass auch andere Proteine an den Synapsen von Nervenzellen über ein breiteres Funktionsspektrum verfügen könnten, als bisher angenommen (Nature Neuroscience, Online-Vorauspublikation, 14. Dezember 2003).



Ein moderner Computer mit einer Taktfrequenz von 1 Gigahertz ist dem menschlichen Gehirn mit nur 1 Kilohertz Taktfrequenz an Schnelligkeit haushoch überlegen. Dennoch ist unser Gehirn mit seiner komplexen Leistungsfähigkeit unschlagbar. Im Gegensatz zum Computer beruht dies nicht auf starren Schaltkreisen und Verbindungen eines elektronischen Geräts. In der menschlichen Schaltzentrale werden die Verbindungen zwischen Nervenzellen ständig verändert, neu geschaffen oder auch abgebaut. Auch die Stärke ihrer Verbindungen über die so genannten Synapsen kann sich ständig verändern und an die Stärke der Reize anpassen. Diese Fähigkeit der Veränderlichkeit nennt man Plastizität. Sie ist einer der Forschungsschwerpunkte am Max-Planck-Institut für Neurobiologie in Martinsried bei München. Ein weiterer Schwerpunkt ist die Erforschung der chemischen Signale, die bei der Entwicklung des Nervensystems eine Rolle spielen - die Ephrine und Eph-Rezeptoren. Ilona Grunwald, Abteilung Molekulare Neurobiologie (Direktor: Rüdiger Klein) und Martin Korte, Abteilung Zelluläre und Systemneurobiologie (Direktor: Tobias Bonhoeffer) haben durch ihr gemeinsames Forschungsprojekt wesentlich neue Erkenntnisse zur synaptischen Plastizität beigetragen. Unterstützt wurden sie dabei von Giselind Adelmann und Michael Frotscher von der Universität Freiburg und anderen Forscher aus dem In- und Ausland.

Die Plastizität des Gehirns ist eine entscheidende Voraussetzung für Lernen und Gedächtnis. Eine wichtige Rolle spielt dabei der Hippokampus, ein Teil des Großhirns, das durch seine gerollte Form an ein Seepferdchen erinnert. In ihm werden neue Informationen kurzfristig gespeichert und auf die anderen Gehirnbereiche zur Langzeitspeicherung verteilt. Patienten ohne Hippokampus leben in der Vergangenheit, sie haben die Fähigkeit der kurzfristigen Speicherung und Verteilung von Information verloren. Seine Eigenschaften verdankt der Hippokampus unter anderem der hohen Plastizität seiner Nervenzellen. Diese haben die Martinsrieder Wissenschaftler an Gewebeschnitten von Maushirnen untersucht und dabei die Kommunikation zwischen Nervenzellen verschiedener Regionen des Hippokampus aufgezeichnet (CA3-CA1-Region).

Bei der Signalübertragung von einer Nervenzelle auf die andere sind Proteine (Liganden und Rezeptoren) an der Synapse beteiligt, die sich an der Membran der ersten Zelle (präsynaptisch) mit denen der zweiten (postsynaptisch) ergänzen und auf diese Weise eine Weiterleitung von Informationen ermöglichen. Ein solcher Kommunikationsapparat besteht unter anderem aus Ephrin-Liganden und Eph-Rezeptoren. Bei diesen Molekülen handelt es sich um zwei große Proteinfamilien, die in Unterklassen A und B unterteilt werden. EphrinA-Liganden interagieren nur mit EphA-Rezeptoren, während EphrinB-Liganden neben EphB-Rezeptoren auch mit EphA4-Rezeptoren wechselwirken. Bisher war bekannt, dass präsynaptische Ephrine an postsynaptische Eph-Rezeptoren binden und dadurch weitere intrazelluläre Signale auslösen, wie zum Beispiel den verstärkten Kalziumeinstrom in die Nervenzelle. Jetzt konnten Grunwald und Korte mit ihren Kollegen durch elektrophysiologische Messungen und elektronenmikroskopische Methoden nachweisen, dass Ephrine in bestimmten Nervenzellen des Hippokampus viel häufiger postsynaptisch als präsynaptisch vorkommen (s. Abbildung).

Im nächsten Schritt haben die Wissenschaftler untersucht, ob postsynaptische Ephrine an der Plastizität von Synapsen beteiligt sind. Synaptische Plastizität im Hippokampus ist beispielsweise dafür verantwortlich, dass bei einer hochfrequenten Reizung einer Synapse ihre Übertragungseigenschaften verändert werden, so dass der Reiz verstärkt an der postsynaptischen Seite ankommt. Dieser Vorgang, die so genannte Langzeitpotenzierung (LTP=long-term potentiation), wird durch synaptische Moleküle wie die oben erwähnten Ephrine und Eph-Rezeptoren bewirkt. Neben der Verstärkung kann jedoch auch eine Abschwächung oder Hemmung der synaptischen Effektivität, eine Langzeitdepression (LTD= long-term depression), auftreten. Doch durch welche Signalwege genau die Langzeitpotenzierung oder Langzeitdepression aufrechterhalten wird, ist noch weitgehend unklar. Jetzt konnten die Max-Planck-Wissenschaftler nun nachweisen, dass zwei EphrinB-Liganden in der postsynaptischen Membran für die Ausbildung von LTP und LTD notwendig sind.

Im letzten Schritt ihrer Studie wollten die Neurobiologen die Rolle des zu den beiden Ephrinen gehörenden EphA4-Rezeptor untersuchen. Sie stellten fest, dass der EphA4-Rezeptor zwar an der Ausbildung von Langzeitpotenzierung durch die Ephrine beteiligt ist, die aktive Signalgebung jedoch von den Ephrinen ausgehen muss, da auch mit einem seines "Signalisierungsteils" beraubten EphA4 Rezeptor die Verstärkung möglich war. In diesem speziellen Fall sind die Rollen also vertauscht: Der EphA4-Rezeptor verhält sich der wie ein Signalgeber, während der EphrinB-Ligand die Signalübermittlung übernimmt.

Durch die Entdeckung, dass das EphrinB-Eph-Rezeptor-System in verschiedenen Hippokampus-Regionen in entgegengesetzter Weise operiert, haben Grunwald und Korte mit ihren Kollegen jetzt neue Möglichkeiten aufgezeigt, wie die synaptische Plastizität im Gehirn zustande kommen könnte. Weitere Untersuchungen werden zeigen, wie dies im Detail erfolgt. Die Tatsache, dass ein Protein einmal als Signalgeber und einmal als Signalübermittler fungieren kann, lässt jedenfalls vermuten, dass auch andere Synapsen-Proteine auf diese Weise Ihre Funktionalität erweitern könnten.

Weitere Informationen erhalten Sie von:

Eva-Maria Diehl
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578-2824, Fax: -2943
E-Mail: diehl@neuro.mpg.de

Eva-Maria Diehl | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.neuro.mpg.de

Weitere Berichte zu: Eph-Rezeptoren EphA4-Rezeptor Ephrine Nervenzelle Protein Synapse

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten