Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie im Embryo von Pflanzen oben und unten festgelegt wird

13.11.2003


Tübinger Entwicklungsgenetiker veröffentlichen Forschungsergebnisse in "Nature"


Wie bei Mensch und Tier wird auch bei Pflanzen während der Entwicklung des Embryos aus einer befruchteten Eizelle die Hauptkörperachse festgelegt. Bei Tieren verbindet diese Achse Kopf und Hinterende, bei Pflanzen Spross und Wurzel. Für manche Tiere wie z.B. Drosophila weiß man seit langem, wie die Achse entsteht (u.a. durch Untersuchungen von Christiane Nüsslein-Volhard), für Pflanzen gab es bis vor kurzem keine klaren Vorstellungen darüber. Man kannte Signalmoleküle bei Pflanzen, darunter das Wachstumshormon Auxin, das gerichtet in der Pflanze transportiert wird und an verschiedenen Wachstumsvorgängen beteiligt ist. Auch gab es Hinweise darauf, dass Auxin in Embryonen vorkommen könnte. Jedoch war bislang seine Rolle bei der Embryoentwicklung ungeklärt.

Tübinger Biologen um Prof. Gerd Jürgens und Dr. Jiri Friml vom Zentrum für Molekularbiologie der Pflanzen der Universität Tübingen haben nun herausgefunden, wie die Hauptkörperachse im jungen Embryo festgelegt wird und welche Rolle Auxin dabei spielt. Ihre Forschungsergebnisse, die gemeinsam mit Wissenschaftlern von der Universität Leiden, Niederlande, und vom Max-Planck-Institut für Entwicklungsbiologie in Tübingen gewonnen wurden, werden in der heutigen Ausgabe der Fachzeitschrift Nature (Band 426, Heft 6963) veröffentlicht.


Wenn die befruchtete Eizelle sich teilt, entstehen eine kleine obere Zelle und eine große untere Zelle. Schon in diesem frühen Entwicklungsstadium konnten die Forscher festellen, dass sich Auxin in der oberen Zelle ansammelt. Hier bewirkt Auxin, dass der zukünftige "Kopf" der Pflanze festgelegt wird. Wenn sich die obere Zelle mehrere Male geteilt hat, muss am unteren Ende des kugelförmigen Embryos die zukünftige Wurzel entstehen. Zu diesem Zeitpunkt sammelt sich Auxin am unteren Ende und gibt damit das Signal für die Wurzelbildung. Damit ist die Spross-Wurzel-Achse im Embryo festgelegt.

Wodurch sammelt sich Auxin nun ganz früh in der kleinen oberen Zelle an und später am unteren Ende des Embryos? Ein erster Hinweis darauf, dass ein gerichteter Transport von Auxin daran beteiligt ist, ergab sich aus bestimmten Mutanten, die Probleme haben, die Achse im Embryo zu bilden. Diese "gnom" Mutanten können ein bestimmtes Protein nicht bilden, das für die polare Ansammlung eines Auxin-Transporters in der äußeren Zellmembran benötigt wird. Der Auxin-Transporter wechselt dauernd zwischen internen Abteilen in der Zelle und der äußeren Zellmembran. Anfang dieses Jahres konnten die Tübinger Biologen nachweisen, dass das GNOM Protein nicht nur für das Zurückführen des Auxin-Transporters zur äußeren Zellmembran, sondern auch für den gerichteten Transport von Auxin notwendig ist (veröffentlicht in der Fachzeitschrift Cell (Band 112, Heft 2).

In der jetzigen Arbeit wurde nachgewiesen, dass die Hemmung des Auxin-Transports im jungen Embryo Störungen bei der Achsenbildung wie in den "gnom" Mutanten verursacht. Wird der Transport ganz früh gehemmt, sammelt sich Auxin in der unteren Zelle an und gelangt nicht in die kleine obere Zelle. Später führt die Hemmung dazu, dass Auxin sich am oberen Ende des Embryos ansammelt, anstatt an das untere Ende zu gelangen. Es gibt also zwei Auxin-Flüsse während der Achsenbildung im Embryo: früh von unten nach oben, später von oben nach unten. Damit sind die Enden der Achse festgelegt. Zusätzlich wurde ein neuer Auxin-Transporter identifiziert, der den frühen Transport von unten nach oben vermittelt. Er ist dafür genau richtig positioniert in der äußeren Zellmembran der größeren unteren Zelle an der Grenze zur kleinen oberen Zelle. Die neuen Befunde zeigen erstmals, wie im jungen Pflanzenembryo die Hauptkörperachse entsteht. Sie machen auch deutlich, dass der Mechanismus ganz anders ist als bei Tieren. Das ist nicht weiter verwunderlich, da Pflanzen und Tiere schon früh in der Evolution getrennt aus einzelligen Lebewesen hervorgegangen sind.

Die Arbeitsgruppen von Prof. Gerd Jürgens und Dr. Jiri Friml zielen mit ihren Forschungen an der Modellpflanze der Genetiker, der Ackerschmalwand (Arabidopsis thaliana), darauf ab, grundsätzliche Mechanismen in der Entwicklung von Pflanzen aufzuklären.

Nähere Informationen:

ZMBP, Zentrum für Molekularbiologie der Pflanzen
Entwicklungsgenetik
Auf der Morgenstelle 3, 72076 Tübingen
Prof. Gerd Jürgens, Tel. 07071-29-78887
Dr. Jiri Friml, Tel. 07071-29-78889

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Berichte zu: ACHSE Auxin Auxin-Transporter Embryo Zelle Zellmembran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kaltes Wasser: Und es bewegt sich doch!
27.06.2017 | Universität Innsbruck

nachricht Was Stammzellen zu perfekten Alleskönnern macht
27.06.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie