Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemischer Trick gibt neue Einblicke in die Logistik der Zelle

24.10.2003



Darstellung des Ypt1:GDI-Proteinkomplexes. Der Lipidrest (Isoprenoid) ist grün, das GDP grau und das damit assoziierte Magnesiumion magenta gefärbt. Domäne I von GDI ist in blau, Domäne II in blau-grau dargestellt. Bild: Max-Planck-Institut für molekulare Physiologie


Herstellung halb-synthetischer Rab-Proteine durch chemische Ligation.
Bild: Max-Planck-Institut für molekulare Physiologie


Max-Planck-Wissenschaftlern entschlüsseln mit Hilfe halbsynthetischer Proteine, wie Zellen Rab-Transportproteine "recycelt"

... mehr zu:
»GDI »Membran »Protein »Rab-Protein »RabGDI »Ypt1 »Zelle

Zellen von Pflanzen, Tieren und Menschen beherbergen eine Vielzahl abgeschlossener Räume (Kompartimente) bzw. Organellen, zwischen denen permanent ein hohes "Verkehrsaufkommen" zu bewältigen ist. Eine wichtige Gruppe unter den "Verkehrslotsen" in diesen Zellen sind die so genannten Rab/Ypt-Guanosin-Triphosphatasen (GTPasen), deren Funktion durch ein spezielles Inhibitor-Protein (RabGDI) gesteuert wird. Doch wie diese Verkehrsregelung und -sortierung in der Zelle im Detail funktioniert, war bisher nicht bekannt, da die Aufklärung der atomaren Struktur der beteiligten Proteine an technischen Problemen scheiterte. Jetzt ist es Wissenschaftlern des Max-Planck-Institut für molekulare Physiologie in Dortmund dank einer trickreichen Kombination aus chemischer Synthese und Protein-Engineering gelungen, den dabei entstehenden Proteinkomplex (Ypt1:RabGDI) "in Aktion" herzustellen, zu kristallisieren und seine atomare Struktur mit einer Auflösung von 1,5 Angstrom zu bestimmen. Dank der nun vorliegenden Struktur ist auch klar, warum eine Mutante des Inhibitor-Proteins zu einer Form von geistiger Retardierung beim Menschen führt (Science, 24. Oktober 2003).

Die Zellen von Eukaryonten (Tiere, Pflanzen, u.a.)unterscheiden sich von Prokaryonten (Bakterien, Blaualgen und Mykoplasmen) unter anderem dadurch, dass sie in ihrem Inneren weitere, durch eine Membranhülle vom übrigen Zellraum abgegrenzte Kompartimente, wie z.B. einen Zellkern oder ein Mitochondrium, besitzen. Der Stoffaustausch zwischen diesen Kompartimenten erfolgt sehr gerichtet und koordiniert über den mehrstufigen Transport in Vesikeln. Eine wichtige Untergruppe jener Proteine, die zu diesem Transportsystem gehören, sind die GTP-bindenden Rab-Proteine (in Hefe: Ypt-Proteine), die in fast allen Kompartimenten einer Zelle zu finden sind. Diese Rab-Proteine können sich dank ihrer Modifizierung durch sogenannte Isoprenoidlipidreste (Geranylgeranylgruppen) mit den Membranen in der Zelle verbinden und auch wieder davon lösen.


Ein zentraler Regulator der GTP-bindenden Rab-Proteine (Rab/Ypt-GTPasen) ist RabGDI (GDI = GDP dissociation inhibitor). Er steuert die Verteilung der aktiven GTP- and der inaktiven GDP-bindenden Proteinformen zwischen den Membranen und dem Zytosol: Nur geranylgeranylierte, GDP-enthaltende Rab-Proteine können durch GDI an die Membranen geliefert bzw. von den Membranen wieder extrahiert werden. In der Hefe ist GDI ein essentielles Protein: Fehlt es, stirbt die Zelle. Beim Menschen führt eine bestimmte Mutation im alpha-RabGDI-Gen, die so genannte I92P-Mutante, bei der an Position 92 Isoleucin gegen Prolin vertauscht ist, zu einer Beeinträchtigung der geistigen Leistungsfähigkeit, der so genannten nicht-syndromischen geistigen Retardierung.

Deshalb haben sich Wissenschaftler seit vielen Jahren darum bemüht, die Struktur des Rab:RabGDI-Komplexes zu bestimmen. Leider gestaltete sich das extrem schwierig, da ausreichende Mengen der lipidierten Rab-Proteine nicht durch den mittlerweile klassisch gewordenen Ansatz der zellulären Überexpression hergestellt werden konnten. Um dieses Problem grundsätzlich zu lösen, haben jetzt Wissenschaftler vom Max-Planck-Institut für molekulare Physiologie verschiedene Methoden der synthetischen organische Chemie mit denen der Molekularbiologie kombiniert. Dieser "Methoden-Mix" ermöglicht erstmals auch einen synthetischen Zugang zu den Hunderttausenden in der Natur vorkommenden Proteinen, indem kleinere – synthetisch oder natürlich hergestellte - Proteinfragmente durch "Ligation" zu erheblich größeren Proteine zusammengeklebt werden können.

Mit Hilfe der chemisch/biochemischen Technik der "expressed protein ligation" sind die Max-Planck-Forscher in der Lage, beliebige Modifikationen im synthetischen Teil des resultierenden Proteins einzuführen. Im vorliegenden Fall wurde ein verkürztes Rab-Protein aus Hefe (Ypt1) als Fusionsprotein mit einer so genannten Intein-Domäne durch Expression in E. coli-Bakterien hergestellt. Der Ypt1-Anteil des Fusionsproduktes wurde dann mit einem Thiol-Reagenz von dem Intein-Anteil abgespalten, so dass ein verkürztes Ypt1-Protein mit einem chemisch-reaktiven C-Terminus - einem Thioester - entstand. Danach konnte durch Reaktion ("Ligation") mit einem synthetisch hergestellten geranylgeranylierten Dipeptid der C-Terminus von Ypt1 in der nativen, mono-lipidierten Form generiert werden (Abbildung 2). Das nach diesem Schema synthetisierte geranylgeranylierte Ypt1 kristallisierten die Forscher dann als Komplex mit RabGDI aus Hefe-Zellen. Durch Röntgenbeugungsanalyse gelang es den Wissenschaftlern, die dreidimensionale Struktur dieses Protein-Komplexes mit einer räumlichen Auflösung von 1,5 A zu bestimmen (Abbildung 1).

Mit der Methode der Proteinligation hat sich das Repertoire der molekularbiologischen Grundlagenforschung erheblich erweitert: Im konkreten Fall der Rab-Proteine gelang es den Dortmunder Forschern damit erstmals, zum einen die Struktur eines Rab-Proteins aufzuklären, das nach der Übersetzung der Basenfolge seiner Boten-RNA noch modifiziert wurde. Zum anderen ergründeten die Wissenschaftler auch den Mechanismus, mit dem das Protein durch das Regulator-Protein GDI "erkannt" wird. Denn aus dem Strukturvergleich des Proteinkomplexes mit einem nicht an GDI gebundenen Rab-Protein kann der spezifische Erkennungsmechanismus der GDP-Form direkt abgeleitet werden. Darüber hinaus wurde offensichtlich, warum sich die GDP-Dissoziation durch GDI verlangsamt. Ebenso wichtig wie auch überraschend sind die Details der Wechselwirkung mit dem lipidierten C-Terminus: So bindet der Lipidrest nicht an der früher vermuteten Stelle, sondern in Domäne II des GDI-Moleküls. Diese Bindungsstelle konnte an Hand der Struktur des freien GDIs nicht identifiziert werden, weil sie in diesem Molekül in der notwendigen Form noch nicht ausgebildet wird, sondern erst in dem Protein-Komplex durch Öffnung des hydrophoben Kerns von Domäne II geschaffen wird.

Die neuen Forschungsergebnisse helfen wesentlich, die Rolle der Rab-Proteine beim Vesikeltransport in der Zelle besser zu verstehen. So kann mit der jetzt vorliegenden Struktur modelliert werden, wie Rab-Proteine durch den Regulator RabGDI in Membranen ein- und ausgebaut werden. Die Proteinstruktur erklärt zudem, warum die schon erwähnte I92P-Mutante des GDI-Proteins die Rab-Proteine viel schlechter aus Membranen wieder extrahieren kann. Sie ermöglicht damit auch ein besseres Verständnis, worin zum Beispiel die molekularen Ursachen für die bereits erwähnte Form der geistigen Retardierung beim Menschen liegen und welche Ansätze für eine Therapie geeignet sein könnten.

Weitere Informationen erhalten Sie von:

Dr. Kirill Alexandrov
Max-Planck-Institut für molekulare Physiologie, Dortmund
Tel.: 0231 133-2356, Fax: -2399
E-Mail: kirill.alexandrov@mpi-dortmund.mpg.de

Dr. Kirill Alexandrov | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpi-dortmund.mpg.de

Weitere Berichte zu: GDI Membran Protein Rab-Protein RabGDI Ypt1 Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nerven steuern die Bakterienbesiedlung des Körpers
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Mit künstlicher Intelligenz zum chemischen Fingerabdruck
26.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie