Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Licht auf die molekularen Ursachen von Multipler Sklerose

24.09.2003


Max-Planck-Forscher entdecken in einem an Multipler Sklerose beteiligten Protein eine "fremde" Struktur, die vom Immunsystem attackiert wird


Schematische Darstellung eines Teils einer Nervenzelle mit Myelinhülle und gebundenen Antikörpern an das MOG-Protein.
Foto: Max-Planck-Institut für Biochemie


Der Detailausschnitt zeigt die dreidimensionale Struktur des Komplexes, der aus MOG (grün, in der Myelinhülle einer Nervenfaser eingebettet) und einem Arm des gebundenen Antikörpers 8-18C5 (rot) gebildet wird.
Foto: Max-Planck-Institut für Biochemie



Die dreidimensionale Struktur eines Proteins, das bei Multipler Sklerose (MS) eine bedeutende Rolle im Krankheitsverlauf spielt, haben Wissenschaftler der Max-Planck-Institute für Biochemie und Neurobiologie in Martinsried gemeinsam mit Forschern der Technischen Universität München aufgeklärt. Die Einblicke in die atomare Struktur des MOG-Proteins ermöglichen ein besseres Verständnis der Autoimmunreaktion, die als eine der Ursachen für MS angesehen wird (PNAS, vol. 100, no. 16, 5. August 2003).



Wissenschaftler der Abteilung Neuroimmunologie des Max-Planck-Instituts für Neurobiologie erforschen speziell die Reaktionen des Immunsystems, die bei Multipler Sklerose eine wichtige Rolle spielen. Normalerweise verteidigt das Immunsystem den Körper mit speziell ausgerüsteten Zellen gegen Krankheitserreger Bakterien oder Viren und fremde Stoffe (Immunreaktion). Doch bei Fehlern im Immunsystem können sich diese Abwehrstrategien auch gegen körpereigene Komponenten richten und dadurch Autoimmunkrankheiten auslösen. Bei der Multiplen Sklerose binden im Laufe der Krankheit spezifische Antikörper an körpereigene Proteine, die in die Myelinhülle von Nervenfasern eingebettet sind, die daraufhin von bestimmten Zellen des Immunsystems abgebaut wird. Eines dieser Proteine ist MOG (myelin oligodendrocyte glycoprotein). Es kommt nur im Zentralen Nervensystem vor und sitzt dort ganz außen auf der Myelinhülle der Nervenfasern, so dass es von Antikörpern leicht erreicht werden kann (vgl. Abbildung).

Im Rahmen ihrer Doktorarbeit ist es Constanze Breithaupt aus der Abteilung Strukturforschung des Max-Planck-Instituts für Biochemie mit ihren Kollegen gelungen, das Myelinprotein MOG zu kristallisieren und seine dreidimensionale Struktur zu entschlüsseln. Zudem klärten die Forscher auch die gemeinsame Struktur von MOG mit dem MOG-spezifischen Teil des Antikörpers 8-18C5 auf. Die Forscher hatten diesen Antikörper ausgewählt, weil im Tiermodell bereits gezeigt werden konnte, dass seine Bindung an MOG für die Zerstörung des Myelins mit verantwortlich ist. In der dreidimensionalen Struktur der MOG-Antikörper-Verbindung lässt sich erkennen, dass der 8-18C5-Antikörper an den gut zugänglichen Teil von MOG bindet, woran viele Bereiche des Proteins beteiligt sind. Hierbei entdeckten die Wissenschaftler eine schleifenförmige Struktur in dem MOG-Protein, einen so genannten FG-Loop, der aus acht Bausteinen (Aminosäuren) des Proteins besteht und zu dieser Bindung einen besonders großen Beitrag leistet.

Die Entdeckung des FG-Loops bestätigte die bereits früher aufgestellte Hypothese, dass das Immunsystem bestimmte Bereiche von MOG als "fremd" erkennt und deshalb nicht toleriert. Die Zellen des Immunsystems werden noch im unreifen Zustand mit allen körpereigenen Molekülen konfrontiert. Bindet eine Zelle in diesem Stadium fest an einen körpereigenen Bestandteil, wird sie sofort unschädlich gemacht, bevor sie eine Autoimmunreaktion auslösen kann. Auf diese Weise bleiben nur jene Zellen erhalten, die fremde Moleküle angreifen und die eigenen akzeptieren also so genannte selbsttolerante Zellen. Deshalb werden Proteine, die in ihrer Struktur MOG ähneln, vom Immunsystem nicht angegriffen, wenn sie den unreifen Zellen des Immunsystems "präsentiert" wurden vielmehr wird jeder noch so kleine Bereich von ihnen als körpereigen akzeptiert.

Doch das MOG-Protein befindet sich hinter der Blut-Hirnschranke auf den Nervenzellen im Zentralen Nervensystem und wird deshalb von den heranreifenden Zellen des Immunsystems nie gesehen. Weist das Protein also nur einen einzigen Teilbereich auf, den seine Verwandten außerhalb des Zentralen Nervensystems nicht haben, kann dieser von eindringenden reaktiven Zellen des Immunsystems als fremd deklariert und eine Immunreaktion ausgelöst werden. Der von den Wissenschaftlern gefundene FG-Loop von MOG, dessen Zusammensetzung sonst in keinem anderen Protein des menschlichen Organismus vorkommt, ist ein Beispiel für einen Protein-Bereich, gegen den der Körper keine Selbsttoleranz entwickelt hat, und der daher durch eine Autoimmunreaktion angegriffen werden kann.

Als die Max-Planck-Wissenschaftler die Aminosäuren-Abfolge dieser seltenen Struktur in eine Protein-Datenbank eingaben, fanden sie dort nur ein einziges Protein mit einem identischen Bereich. Interessanterweise kommt es in Chlamydia-Bakterien vor, deren mögliche Beteiligung an Multipler Sklerose schon länger diskutiert wird. Ob über das MOG-Protein ein Zusammenhang zwischen einer Clamydien-Infektion und später auftretender Multipler Sklerose besteht, ist jetzt Gegenstand weiterer Untersuchungen.

Die Kenntnis der molekularen Struktur von MOG hilft jetzt dabei zu klären, worin die natürliche Funktion von MOG besteht und wie es zu einer pathogenen Antikörper-Antwort gegen MOG bei Multipler Sklerose kommen kann. Anhand der dreidimensionalen Struktur des Proteins und natürlicher Antikörper als Vorlage könnten in Zukunft Hemmstoffe entwickelt werden, um eine Antikörper-Angriff gegen MOG im Körper zu verhindern oder zumindest abzuschwächen.

Weitere Informationen erhalten Sie von:

Max-Planck-Institut für Biochemie
Martinsried b. München
Constanze Breithaupt
Tel.: 089-8578-2824
E-Mail: breitha@biochem.mpg.de

Uwe Jacob
Tel.: 089-8578-2824
E-Mail: ujacob@biochem.mpg.de

Constanze Breithaupt | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.biochem.mpg.de

Weitere Berichte zu: Antikörper Immunsystem MOG MOG-Protein Protein Sklerose

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Schwarzen Hautkrebs in den Tiefschlaf versetzen
22.02.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wirbelstürme im Herzen
22.02.2018 | Max-Planck-Institut für Dynamik und Selbstorganisation

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Verlässliche Quantencomputer entwickeln

22.02.2018 | Informationstechnologie

Histologie in 3D: Neue Färbemethode ermöglicht Nano-CT-Aufnahmen von Gewebeproben

22.02.2018 | Biowissenschaften Chemie

Forscher entdecken neuen Signalweg zur Herzmuskelverdickung

22.02.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics