Auf dem Weg zur Kunststoff-Elektronik

Organische Halbleiter: Die Anordnung der molekularen Bausteine kann über n-Typ oder p-Typ entscheiden

Zukünftige Generationen vieler elektronischer Bauteile werden nicht mehr auf Silizium-Basis, sondern auf der Basis organischer Halbleiter konstruiert werden, die wesentlich flexibler und kleiner gestaltet werden können. Amerikanische Forscher von der Northwestern University und von den Bell Laboratories, Lucent Technologies haben jetzt eine neue Verbindungsklasse mit interessanten elektronischen Eigenschaften entwickelt, die diese „Kunststoff-Elektronik“ einen wichtigen Schritt voran bringen könnte.

Elektronische Bauteile sind häufig aus mehreren elektronisch unterschiedlichen Schichten aufgebaut. Transistoren etwa bestehen als so genannte pnp- oder npn-Transistoren aus drei Schichten. Dabei bezeichnet p und n zwei gegensätzliche Materialtypen: Bei n-Typen erfolgt der Ladungstransport durch Elektronen, bei p-Typen werden „Löcher“ transportiert, d.h. Stellen, an denen ein Elektron fehlt. Beide Materialtypen werden auch für die Herstellung organischer Dünnfilmtransistoren gebraucht. Das Problem: Bisher sind nur relativ wenige organische Halbleiter des n-Typus bekannt.

Tobin J. Marks und seiner Gruppe ist es nun erstmals gelungen, eine Verbindungsklasse zu entwickeln, die beides sein kann – p-Typ und n-Typ. Das Pfiffige an dem neuen Konzept: Der Typus hängt einzig und allein von der unterschiedlichen Anordnung zweier molekularer Bausteine ab.

Ausgangspunkt war ein stabförmiges Molekül aus sechs miteinander verknüpften Thiophen-Einheiten (ein Fünfring aus vier Kohlenstoffatomen und einem Schwefelatom, der zwei Doppelbindungen enthält). Zwei der Thiophene ersetzten die Forscher durch zwei Perfluoraren-Bausteine, aromatische Kohlenstoff-Sechsringe, die mit Fluoratomen abgesättigt sind. Je nachdem, welche Thiophene ersetzt werden – die beiden äußersten, die beiden zweitäußersten oder die beiden mittleren – entstehen Halbleitermaterialien, die sich deutlich in ihren kristallinen und elektronischen Eigenschaften unterscheiden. Aus den ersten beiden Verbindungen lassen sich dünne Filme mit ausgesprochen guten halbleitenden Eigenschaften herstellen. Erstaunlicherweise ergibt die erste Verbindung einen n-, Verbindung Nummer zwei einen p-Halbleiter. Die dritte Verbindung ist dagegen kein besonders effektiver Halbleiter.

„Dieses Ergebnis ist mit den bisherigen Theorien nicht vollständig erklärbar,“ sagt Marks. „Unsere Verbindungsklasse sollte helfen können, neue fundamentale Erkenntnisse über das Design organischer n-Halbleiter zu gewinnen – unser Team forscht intensiv daran.“

Kontakt: Prof. Tobin J. Marks
Department of Chemistry and the Materials Research Center
Northwestern University
2145 Sheridan Road
Evanston
IL 60208-3113
USA

Fax: (+1) 847-491-2290
E-mail: tjmarks@casbah.acns.nwu.edu

Angewandte Chemie Presseinformation Nr. 33/2003
Angew. Chem. 2003, 115 (33), 4030 – 4033

Media Contact

Dr. Renate Hoer idw

Weitere Informationen:

http://www.angewandte.org

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer