Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sichtbarer Austausch von Protonen in chemischen Reaktionen

18.07.2003


Wissenschaftlern des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) im Forschungsverbund Berlin e.V. ist gelungen - in einer Kooperation mit einer Forschungsgruppe der Ben-Gurion-Universität in Israel -, den ultraschnellen Austausch von Protonen in chemischen Reaktionen sichtbar zu machen.



Protonen sind Elementarteilchen, aus denen Atomkerne aufgebaut sind. Für ihre Studie verwendeten die MBI-Forscher eine so genannte Photosäure auf der Basis von Pyren, die sie mit Acetat reagieren ließen. Die Untersuchung ermöglicht grundlegende Einblicke in Prozesse, wie sie etwa in Zellen ablaufen. Außerdem erweitert sie das gängige Modell des Protonentransfers um einen wichtigen Schritt. Die Forscher berichten darüber im renommierten US-Wissenschaftsmagazin Science (Band 301, Seite 349-352).



Das Besondere einer Photosäure ist, dass sie in zwei Zuständen vorkommt. Einmal ist die Flüssigkeit nur schwach sauer und damit wenig reaktionsfreudig. Wird sie jedoch durch Lichtbeschuss quasi mit Photonen "aufgeladen", so ändert sich der Säuregrad schlagartig - mit einem Mal will die Säure heftig reagieren. "Man schießt also mit einem ultravioletten Laserstrahl in die Flüssigkeit", erläutert Studienautor Dr. Erik Nibbering, "und gibt damit das Signal ,ab jetzt bist du sauer!’" Dieser Effekt ist wichtig, weil sich dadurch der Anfangszeitpunkt einer Reaktion genau festlegen lässt.

Nach der Anregung durch das UV-Licht tasteten die Experten des MBI die Flüssigkeit mit einem anderen Laser ab. Dieser strahlte im Infrarotbereich. "Man benutzt die Sensitivität von Molekularschwingungen zu Infrarotlicht", sagt Nibbering. Daraus wiederum ließen sich viele Informationen gewinnen. Vor allem konnte die Arbeitsgruppe mit dem extrem schnellen Anrege-Abtast-Experiment exakt bestimmen, wann ein Proton die Säure verlässt und wann eines bei der Base ankommt.

"Das muss nicht unbedingt das gleiche Proton sein", berichtet Nibbering. Vielmehr könne man sich das so vorstellen wie die Kugelspiele, die manchmal auf Schreibtischen stehen. Dabei hängen fünf oder sechs Kugeln aufgereiht nebeneinander, die sich alle berühren. Zieht man nun an einem Ende des Gestells eine Kugel weg und lässt sich auf die anderen Kugeln klickern, so pflanzt sich der Impuls durch alle anderen Kugeln fort, und am Ende springt die letzte Kugel der Reihe weg und klickt wieder zurück. Diese Messungen des Protonentransfers nahmen die Forscher im 100-Femtosekunden-Takt vor. "Das ist unvorstellbar schnell", sagt der Doktorand Matteo Rini. "Zum Vergleich: Knipst man einen Laserstrahl an und lässt ihn eine Sekunde leuchten, so ist der Strahl fast auf dem Mond angekommen. Nach 100 Femtosekunden dagegen hat der Laserstrahl eine Länge, die ungefähr dem Durchmesser eines Haares entspricht."

Die chemischen Reaktionen und die Messungen spielen sich also auf sehr kleinem Raum und in extrem kurzer Zeit ab. Die Forscher pumpten für ihre Studie das Säure-Basen-Wasser-Gemisch durch einen sehr schmalen Schlitz. So entstand eine Art Miniaturwasserfall mit einer Breite von etwa 5 Millimetern. Der "Flüssigkeitsvorhang" ist dabei nur rund hundert Mikrometer dick, zweimal die Breite eines Haares. Durch diesen "Vorhang" schossen die Forscher für ihre Versuche UV-Licht: Die Säure wurde "scharf" und fing an zu reagieren. Zeitgleich begannen die Messungen per Infrarotlaser, um festzustellen, wie die Protonen von der Photosäure zur Base wandern. In der Theorie ist dieser Vorgang bereits vor Jahrzehnten von dem deutschen Chemie-Nobelpreisträger Manfred Eigen beschrieben worden. Eigens Arbeit mündete in das so genannte Eigen-Weller-Modell des Protonentransfers. Dem muss jetzt jedoch eine neue Facette hinzugefügt werden. Wenn Photosäure und Base in direktem Kontakt sind, findet der Protonentransfer rasch statt. Müssen sich aber Photosäure und Base erst aufeinander zubewegen, dann verzögert irgendetwas den Protonenfluss, der Kontakt zwischen Säure und Base findet später statt als von Eigen und Weller vorhergesagt. Wieso? "Wir wissen es noch nicht", sagt Nibbering. Er spekuliert, dass vielleicht erst Wassermoleküle zwischen Säure und Base verschwinden müssten. "Oder die Protonen ,hopsen’ über Zwischenstationen zur Base." Auf jeden Fall müsse ein Zwischenschritt in das Eigen-Weller-Modell integriert werden.

Jenes Modell, das Reaktionsgeschwindigkeiten im Pikosekundenbereich vorhersagte, konnte zum Zeitpunkt seiner Einführung nicht experimentell überprüft werden. Manfred Eigen hatte seinerzeit von "immeasurably fast reactions" geschrieben - die Reaktionen seien unmessbar schnell. Zwar gab es damals schon Laser, und auch in den Bereich der Nanosekunden war man schon vorgedrungen. Eine Nanosekunde ist eine Milliardstel Sekunde. Man konnte sich aber kaum vorstellen, jemals in den Bereich Picosekunden (tausendmal kürzel als Nano) oder gar Femtosekunden (noch einmal tausendmal kürzer) vorzustoßen. Jetzt spricht man dagegen schon von der Attosekundenphysik - auch am Berliner MBI. Eine Attosekunde ist der milliardste Teil einer Millionstelsekunde (10-15).

Und was hat man nun davon, wenn man Protonen beim Wandern zusehen kann? "Das ist Grundlagenforschung", sagt Nibbering. "Aber sie erlaubt uns ein besseres Verständnis der Leitfähigkeit von Wasser für Protonen, also auch ein besseres Verständnis von Prozessen, wie sie an Biomembranen ablaufen." Möglicherweise lasse sich einmal ein molekularer Schalter konstruieren, der auf der Basis einer Photosäure funktioniert, spekuliert der Physiker. Auf jeden Fall aber zeigen die Versuche eines: Was einmal in der Physik als unmöglich galt, muss nicht unmöglich bleiben.

Ansprechpartner:

Dr. Erik Nibbering, Tel. 030 - 6392-1477, nibberin@mbi-berlin.de
Matteo Rini, Tel. 030 - 6392-1414, rini@mbi-berlin.de

Josef Zens | idw

Weitere Berichte zu: Photosäure ProTon Protonentransfer Säure

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neurobiologie - Die Chemie der Erinnerung
21.11.2017 | Ludwig-Maximilians-Universität München

nachricht Diabetes: Immunsystem kann Insulin regulieren
21.11.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie