Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Moleküle kleben

24.04.2003


Mit Hilfe eines Rastersondenmikroskops verbinden Forscher zwei einzelne dendritische Polymermoleküle



Moleküle einfach mit einer Pinzette greifen und nach Lust und Laune aneinander kleben, diese Vorstellung ist nicht im mindesten so absurd, wie sie sich anhören mag. Berliner Forschern um Jürgen P. Rabe und A. Dieter Schlüter ist dieses Kunststück gelungen. Ihre "Bastelei mit Molekülen" ist ein wichtiger Schritt auf dem Weg zu molekularen Nanostrukturen für die Nanotechnologie.



Das Team, das sich aus Chemikern und Physikern von der Freien und der Humboldt Universität rekrutiert, arbeitet mit so genannten dendritischen Polymeren. Das sind lange Molekülketten aus voluminösen, wie ein Geäst verzweigten einzelnen Bausteinen. An ihren "Spitzen" sind die verzweigten Bausteine mit Azid-Gruppen ausgestattet, funktionellen Gruppen, die - sobald sie z.B. durch UV-Licht aktiviert werden - hochreaktiv sind. Aufgetragen auf eine spezielle Unterlage sind die Molekülketten unter dem Rastersondenmikroskop als zylindrische Stränge zu erkennen. So kann man die Moleküle aber nicht nur beobachten, sondern auch manipulieren: Bei der Rastersondenmikroskopie tastet eine hauchfeine Spitze eine Oberfläche ab. Die Kräfte, die von dieser Spitze ausgehen, reichen aus, um winzigste Objekte - wie die Polymerstränge - wie mit einer Pinzette fest zu "greifen" und sehr präzise auf der Unterlage zu verschieben. Die berliner Forscher bringen mit Hilfe der "Pinzetten" zwei ihrer Polymerstränge in Kontakt. Anschließend werden diese mit UV-Licht bestrahlt, die nunmehr aktivierten Azid-Gruppen reagieren ab und sorgen dabei für eine feste chemische Bindung zwischen den beiden Strängen. Je nachdem, an welcher Stelle die Stränge verknüpft werden, lassen sich die verschiedensten Gebilde "basteln", z.B. in Form eines X, Y, O oder einer 8. Dass die erzielte Verknüpfung auch hält, bewiesen die Forscher durch festes Auseinanderziehen der Stangenden.

Die Methode ist aber nicht auf Verbindungen unter dendritischen Polymersträngen beschränkt. Statt der langen Kettenmoleküle kann man analog den Kettenbausteinen aufgebaute, hochverzweigte kugelförmige Moleküle mit reaktiven Azid-Gruppen ausrüsten. Mit diesem "molekularen Klebstoff" lassen sich prinzipiell alle Arten von Makromolekülen untereinander verknüpfen. Auch Hybrid-Strukturen zwischen völlig verschiedenen Typen von Nano-Objekten, etwa DNA und Kohlenstoff-Nanoröhrchen, scheinen so zugänglich.

Kontakt:

Prof. Dr. J. P. Rabe
Institut für Physik
Humboldt Universität Berlin
D-10099 Berlin, Germany
Fax: (+49) 30-2093-7632
E-mail: rabe@physik.hu-berlin.de

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.angewandte.org

Weitere Berichte zu: Azid-Gruppe Molekül Rastersondenmikroskop UV-Licht

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie