Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Puzzle der Proteinfaltung

06.02.2003


Galt die Erforschung der Faltung von Proteinen noch vor Jahren als hochinteressante, aber eher akademische Fragestellung, hat diese Forschungsrichtung inzwischen auch ein medizinisches Gewicht bekommen. Das hat verschiedene Gründe. So konnte die Forschung zum einen zeigen, dass fehlerhaft gefaltete Proteine schwere Erkrankungen auslösen, weil die zusammengeklumpten Eiweiße nicht mehr abgebaut werden können. Dazu zählen etwa Alzheimer, Creutzfeldt-Jacob, Rinderwahn (BSE), die Traberkrankheit Scrapie bei Schafen sowie einige Muskelerkrankungen. Zum anderen spielt die effiziente und korrekte Faltung von Proteinen bei der gentechnischen Produktion zum Beispiel von Medikamenten eine wichtige Rolle. Darauf hat Prof. Thomas Kiefhaber vom Biozentrum der Universität Basel (Schweiz) auf einem wissenschaftlichen Symposium im Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch am Mittwoch, den 5. Februar 2003, anlässlich des 65. Geburtstags des Proteinforschers Prof. Gregor Damaschun (MDC) hingewiesen. Prof. Damaschun gilt auf diesem Gebiet als einer der international renommiertesten Proteinforscher. Zugleich stellte Prof. Kiefhaber neue biophysikalische Techniken vor, die es ermöglichen, die elementaren Prozesse der Proteinfaltung zu verfolgen, die innerhalb von millionstel bis milliardstel von Sekunden ablaufen.



Proteine sind die Baustoffe und Maschinen des Lebens. Es gibt keinen Prozess im Organismus, der ohne sie von statten gehen kann. Angefangen von der Zellteilung bis zur Verdauung der Nahrung bis hin zum Sauerstofftransport im Blut. So vielfältig ihre Aufgaben, so vielfältig ist auch ihr Aussehen. Es gibt sie in verschiedenen Formen und Größen. Der Bauplan der Proteine ist in den Genen enthalten. In den Proteinfabriken der Zelle, den Ribosomen, werden die Bausteine der Proteine, die Aminosäuren, wie Glieder einer Kette aneinandergereiht. Das sind im Schnitt mehrere hundert Bausteine. Um aktiv sein zu können, müssen die Proteine in eine ganz bestimmte dreidimensionale Struktur gefaltet werden. Diese Struktur ist für ihre Funktion im Organismus entscheidend.

... mehr zu:
»Faltung »Protein »Proteinfaltung »Prozess


Geschwindigkeitsbegrenzung für Proteinfaltung
Proteine finden ihre gefaltete Struktur normalerweise von selbst. Das bedeutet, dass die Information für die räumliche Struktur in der Abfolge der Aminosären festgelegt ist. Helferproteine, so genannte Chaperone, unterstützen außerdem den Prozess in der Zelle. Das Verständnis der Vorgänge, die bei der normalen Faltung eines Proteins ablaufen, ist ein aktuelles Problem in der Biochemie und Biophysik, aber auch essentiell für die Untersuchung von Faltungskrankheiten. "Die frühesten Faltungsprozesse der Proteine laufen in Zeitbereichen von millionstel bis millardstel von Sekunden ab", sagte Prof. Kiefhaber. "Die Geschwindigkeitsbegrenzung für die Proteinfaltung liegt bei ungefähr zehn Milliardstel Sekunden (10-8 s)", erläuterte er. Die meisten Proteine finden ihre biologisch aktive Struktur innerhalb von Millisekunden bis Minuten, aber selbst kleine Änderungen in der Aminosäuresequenz, zum Beispiel durch Mutationen, können zu großen Änderungen in den Faltungsgeschwindigkeiten sowie zu fehlerhafter Faltung führen.


"Mit Hilfe spezieller Untersuchungstechniken wie zum Beispiel der Kernspinresonanz-Spektroskopie (NMR-Spektroskopie) und der Messung von zeitabhängigen Änderungen verschiedener anderer spektroskopischer Signale versuchen Wissenschaftler, das Puzzle der Proteinfaltung zu lösen", sagte Prof. Kiefhaber. Ziel der Untersuchungen des in Basel arbeitenden deutschen Forschers ist es, auf molekularer und atomarer Ebene zu verstehen, welche Zwischenstufen bei der Proteinfaltung durchlaufen werden und welche Regionen der Proteinkette für den Faltungsprozess besonders wichtig sind. Diese Ergebnisse sollen dazu beitragen, dass die Faltung von Proteinen vorhergesagt werden kann und die Ursachen von Faltungskrankheiten im molekularen Detail verstanden werden.

Weitere Informationen erhalten Sie von der
Pressestelle des Max-Delbrück-Centrums für Molekulare Medizin (MDC) Berlin-Buch
Barbara Bachtler
Robert-Rössle-Str.10
13125 Berlin
Tel.: +49/30/9406-38 96
Fax.:+49/30/9406-38 33
E-Mail: presse@mdc-berlin.de


Barbara Bachtler | idw
Weitere Informationen:
http://www.mdc-berlin.de

Weitere Berichte zu: Faltung Protein Proteinfaltung Prozess

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Erforschung von Elementarteilchen in Materialien

17.01.2017 | Physik Astronomie

Wasser - der heimliche Treiber des Kohlenstoffkreislaufs?

17.01.2017 | Geowissenschaften

Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab

17.01.2017 | Biowissenschaften Chemie