Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hassium auf der Flucht mit Sauerstoff

23.08.2002


Einer der 36 Siliziumdetektoren, in denen sich die sieben erzeugten Hassium-Atome absetzten und einen Stromimpuls auslösten.

Bilder PSI



Das vor bald 20 Jahren entdeckte schwere Element Hassium konnten Forscher erstmals in Form einer chemischen Verbindung mit Sauerstoff nachweisen. Damit lässt sich das künstliche Metall im Periodensystem einordnen. Für die Experimente setzte das internationale Team unter Leitung des Paul Scherrer Instituts neuartige und eigens dazu entwickelte Siliziumdetektoren ein.


Bis 1940 galt Uran als das schwerste chemische Element. Das in der Natur vorkommende Metall trägt die Ordnungszahl 92, sind doch in seinem Atomkern 92 positiv geladene Elementarteilchen (Protonen) vorhanden. Seither sind über 20, nur künstlich herstellbare Elemente entdeckt worden. Die Reihe geht von Neptunium - mit der Ordnungszahl 93 - bis hin zu Element 116, das noch keinen Namen erhalten hat.

Hassium (lat. Hessen) mit der Ordnungszahl 108 wurde 1984 im hessischen Darmstadt entdeckt, doch erst viele Jahre später chemisch untersucht. Der erstmalige Nachweis seiner besonderen chemischen Eigenschaften und damit die Einreihung ins Periodensystem gelang einer internationalen Forschergruppe unter der Leitung von Professor Heinz Gäggeler vom Paul Scherrer Institut und der Universität Bern. Über die Ergebnisse berichtet das britische Wissenschaftsmagazin Nature in seiner jüngsten Ausgabe.


Bei ihren Untersuchungen konnten die Wissenschafter zeigen, dass sich das schwere Hassium mit Sauerstoff zu einem flüchtigen Gas verbindet. Mit dieser Eigenschaft ähnelt das Metall den leichteren Elementen Osmium und Ruthenium. Diese chemisch verbündeten Metalle sind in der achten Gruppe des Periodensystems angesiedelt und gehen Sauerstoffverbindungen ein, die mit höherer Ordnungszahl des Elements immer flüchtiger werden. Zu der Gruppe gehört nun auch Hassium, das schwerste unter den bisher chemisch analysierten Elementen.

Sieben Hassium-Atome genügten für Experimente
Der Nachweis der flüchtigen Hassium-Atome war anspruchsvoll, ist doch das Element 108 schwierig herzustellen. Erforderlich für das Hauptexperiment war der leistungsstarke Schwerionenbeschleuniger in Darmstadt. Die Anlage schoss Magnesium-26-Ionen auf ein Target aus hoch radioaktivem Curium-248, wo in einer Verschmelzungsreaktion (Fusion) Hassium-Atome entstanden - ganze sieben an der Zahl, die jedoch instabil sind und nach wenigen Sekunden durch Aussenden von Helium-Atomkernen in Atome tieferer Ordnungszahlen zerfallen.

Mit einem ausgeklügelten Verfahren wurden die einzelnen Hassium-Atome mit Sauerstoff verbunden und durch 36 Siliziumdetektoren geschleust. Damit sich die wenigen flüchtigen Atome auf einer der hauchdünnen Schichten in einem Detektor absetzten und einen Stromimpuls auslösten, mussten tiefe Temperaturen herrschen - zwischen minus 20 und minus 170 Grad Celsius. Die speziellen, am PSI entwickelten Halbleiter dienen den Forschern als Detektoren für weitere Expeditionen in die Chemie noch schwererer Elemente. (Quelle: Nature, Band 418, Seiten 859 - 862)

Weitere Fachauskünfte:
Prof. Dr. Heinz Gäggeler, Leiter Bereich TEM und Labor für Radiochemie
Tel. 056 310 24 04, 079 263 26 07;  heinz.gaeggeler@psi.ch

Beat Gerber | idw

Weitere Berichte zu: Hassium Hassium-Atome Metall Ordnungszahl Sauerstoff

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Hemmung von microRNA-29 schützt vor Herzfibrosen
20.11.2017 | Technische Universität München

nachricht Satellitenbilder zur Erfassung von Biodiversität nur bedingt tauglich
20.11.2017 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie