Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Diversin: MDC-Forscher entdecken neues Gen

15.08.2002


Ein Gen, das eine entscheidende Rolle für den reibungslosen "Funkverkehr" zwischen Zellen und damit für die Entwicklung eines komplexen und gesunden Organismus spielt, hat jetzt die Forschungsgruppe von Prof. Walter Birchmeier am Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch aufgespürt. Das Gen ist in einen hoch-komplizierten Signalweg eingebunden, den so genannten Wnt-pathway. Er reicht von der Zelloberfläche bis in den Zellkern. Ist die Signalübertragung auf diesem Informationskanal gestört, können Fehlbildungen und Tumoren entstehen. Thomas Schwarz-Romond und Prof. Birchmeier konnten jetzt zeigen, dass das Gen den Abbau von beta-Catenin, einem wichtigen Glied in dieser Signalkette, auslöst und damit verhindert, dass es zum falschen Zeitpunkt in den Zellkern gelangt und dort Schaden anrichtet. Zugleich gelang es ihnen, die einzelnen Aktivierungsschritte (Phosphorylierung) dieses lebensnotwendigen Abbauprozesses aufzuklären. Das Gen haben die Forscher "Diversin" genannt, da es möglicherweise diverse, also verschiedene Aufgaben im Organismus hat. Ihre Arbeit ist jetzt in der renommierten Fachzeitschrift "Genes and Development"* (Vol. 16, Nr. 16, 15. August 2002; http://www.genesdev.org) erschienen.

Im Organismus von Mensch und Tier sind Zellen über Bindungsmoleküle (Adhäsionsmoleküle) miteinander verknüpft. Damit werden sie nicht nur in ihrem Zellverband festgehalten, sondern sie tauschen über diese Moleküle auch Informationen aus. Andere Moleküle, die zum Beispiel Wachstums- oder Differenzierungsfaktoren produzieren, sowie Hormone und ihre Re-zeptoren dienen ebenfalls dem Informationsaustausch zwischen Zellen. Zu dieser Gruppe von Bindungs- und Signalmolekülen, die Wissenschaftler in den vergangenen Jahren entdeckt haben, gehört etwa das beta-Catenin (lat. catena - die Kette). Prof. Birchmeier und seine Mitarbeiter erforschen dieses Molekül intensiv seit 1992.

Es zeigte sich, dass bei Fehlentwicklungen sowie bei einer Reihe von Tumoren beta-Catenin verändert (mutiert) ist, so bei der Hälfte aller Leberkrebsfälle und bei zehn Prozent der Fälle von Dickdarmkrebs. Deshalb wollen Prof. Birchmeier und seine Mitarbeiter in einem weiteren Schritt untersuchen, ob das Gen Diversin in Tumorzellen ebenfalls defekt ist. Möglicherweise lässt sich dann in Zukunft erkennen, ob ein Tumor Tochtergeschwülste (Metastasen) bilden wird oder nicht.

*The ankyrin repeat protein Diversin recruits Casein kinase Ie to the b-catenin de-gradation complex and acts in both canonical Wnt and Wnt/JNK signaling

Thomas Schwarz-Romond, Christian Asbrand, Jeroen Bakkers*, Michael Kühl , Hans-Joerg Schaeffer, Jörg Huelsken, Jürgen Behrens , Matthias Hammerschmidt*, and Walter Birchmeier

Max Delbrueck Center for Molecular Medicine, Robert-Roessle-Strasse 10, D-13092 Berlin, Germany, *Max Planck Institute for Immunobiology, Stübeweg51, D-79108 Freiburg, Germany, University of Ulm, Dep. of Biochemistry, Albert-Einstein-Allee 11, D-89081 Ulm, Germany, and University of Erlangen, Nikolaus-Fiebiger-Center, Glückstr.6, D-91054 Erlangen, Germany

Barbara Bachtler | idw
Weitere Informationen:
http://www.mdc-berlin.de

Weitere Berichte zu: Diversin Gen Molekül

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Neue Arten in der Nordsee-Kita
05.12.2016 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie sich Zellen gegen Salmonellen verteidigen

05.12.2016 | Biowissenschaften Chemie

Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen

05.12.2016 | Förderungen Preise

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik