Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Beschützer auf Abwegen - Ein ungleiches Prion-Paar lässt Neuronen sterben

03.07.2008
Die Umfaltung des zellulären Prion-Proteins (PrPC) in eine pathologische, also krankmachende, Konformation (PrPSc) ist das charakteristische Merkmal verschiedener neurodegenerativer Leiden, etwa der Creutzfeldt-Jakob-Erkrankung beim Menschen, BSE bei Rindern oder Scrapie beim Schaf. Dabei akkumuliert PrPSc mit falscher dreidimensionaler Struktur und zerstört Nervengewebe.

PrPC in seiner normalen Struktur schützt dagegen die Zellen vor Stress und hat möglicherweise noch andere, bisher unbekannte Funktionen. Ein internationales Forscherteam unter der Leitung von Professor Jörg Tatzelt von der Ludwig-Maximilians-Universität (LMU) München zeigt nun online im "EMBO Journal", dass die toxische Wirkung des fehlgefalteten Prion-Proteins nur in Zellen eintritt, die auch das normale Prion-Protein enthalten.

Möglicherweise gehen die beiden Proteine eine Bindung ein und lösen dann als Komplex Zelltod aus. "Um die Zellen vor Stress schützen zu können, müssen aber auch zwei normale Prion-Proteine eine Verbindung eingehen und ein sogenanntes Dimer bilden", berichtet Tatzelt. "Wir konnten zeigen, welche Proteindomänen für die Dimerisierung und die stressprotektive Aktivität nötig sind. Insgesamt könnten unsere Ergebnisse möglicherweise den Ansatzpunkt für Therapien von Prion-Erkrankungen liefern."

Der zweigesichtige römische Gott Janus ist heute das Sinnbild für Zwiespältigkeit und damit auch für Menschen, die scheinbar unvereinbare Eigenschaften zeigen. Doch seine perfekte Entsprechung hat Janus in der Welt der Moleküle gefunden: das Prion-Protein. Dieses Molekül kommt in zwei verschiedenen Formen vor, abhängig von der dreidimensionalen Struktur, in die es gefaltet ist. Proteine sind die wichtigsten Funktionsträger der Zelle. Neu synthetisiert bestehen sie aus einer oder mehreren langen Ketten von Aminosäuren, den Bausteinen der Proteine. Ihre Aufgaben können sie aber erst erfüllen, wenn diese Ketten in eine jeweils spezifische Struktur gefaltet sind. In seiner korrekten Form erfüllt das Prion-Protein einige wichtige Funktionen in der Zelle, unter anderem schützt es vor Stress.

... mehr zu:
»Molekül »Neuron »PrPC »Prion-Protein »Protein »Zelle

In einer fehlgefalteten Form aber kann das Prion-Protein zu tödlich verlaufenden, bisher nicht therapierbaren neurodegenerativen Leiden führen, etwa die Creutzfeldt-Jakob-Erkrankung des Menschen, den Rinderwahn BSE oder Scrapie beim Schaf. Lange Zeit war der Auslöser dieser Krankheiten unbekannt. Erst Anfang der 80er Jahre stellte der US-amerikanische Forscher Stanley Prusiner die Hypothese auf, dass fehlgefaltete Prion-Proteine ihre korrekt geformten Gegenstücke ebenfalls in die falsche dreidimensionale Struktur ,zwingen' könnten.

Diese Vermutung widersprach einem zentralen Dogma der Biologie, dass nämlich nur Erreger mit einer Nukleinsäure wie dem Erbmolekül DNA Infektionen verbreiten könnten. Es fanden sich aber zunehmend Hinweise, die Prusiners Hypothese von den infektiösen Proteinen weitgehend bestätigten - und ihm letztlich den Nobelpreis für Medizin einbrachten.

In ihrer Untersuchung konnten die Forscher um Tatzelt bestätigen, dass die Produktion von normalen Prion-Proteinen die betreffenden Neuronen vor Stress schützen kann. Sie konnten auch zeigen, dass der toxische Effekt fehlgefalteter Prion-Proteine auf das normal gefaltete und vor Stress schützende PrPC in der Zelle angewiesen ist: In Neuronen, denen PrPC fehlt, können die fehlgefalten Prion-Proteine keinen Schaden anrichten. Vermutlich hängt die stressprotektive Aktivität des normalen Prion-Proteins davon ab, dass zwei solche Moleküle eine Verbindung eingehen, also ein Dimer bilden. Das Forscherteam konnte zudem entschlüsseln, welche Abschnitte in den Proteinen für diese Funktion essentiell sind. Darunter waren auch zwei bislang unbekannte Proteindomänen.

"Es lässt sich nun spekulieren, dass die fehlgefalteten Prion-Proteine ihre toxische Wirkung nur zeigen können, wenn sie je mit PrPC eine Verbindung eingehen, um so einen Komplex aus einem normalen und einem fehlgefalteten Prion-Protein zu bilden", sagt Tatzelt. "Wir wissen aber noch nicht, wie ein derartiger Komplex aus zwei ungleichen Partnern den Zelltod auslöst. Wir wollen nun die Signalkette in weiterführenden Versuchen untersuchen. Unsere Ergebnisse liefern aber auch jetzt schon wichtige Einsichten in den Mechanismus der Schutzfunktion normaler Prion-Proteine wie auch in die krankmachende Wirkung ihrer fehlgefalteten Gegenstücke. Möglicherweise lassen sich diese Erkenntnisse in Zukunft auch in Therapien von Prion-Erkrankungen umsetzen."

Publikation:
"Stress-protective signalling of prion protein is corrupted by scrapie prions",
Angelika S. Rambold, Veronika Müller, Uri Ron, Nir Ben-Tal,
Konstanze F. Winklhofer and Jörg Tatzelt,
EMBO J. 2008 Jun 19. [Epub ahead of print]
Ansprechpartner:
Prof. Dr. Jörg Tatzelt
Adolf-Butendandt-Institut der LMU
Tel.: 089 / 2180 - 75 - 442 / - 458
Fax: 089 / 2180 - 75 - 415
E-Mail: Joerg-Tatzelt@med.uni-muenchen.de
Web: http://haass.web.med.uni-muenchen.de/Research/NBC/index.html

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Molekül Neuron PrPC Prion-Protein Protein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung
26.07.2017 | Universität Bielefeld

nachricht Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa
26.07.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops