Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Winzlinge im Windkanal

24.06.2008
Fruchtfliegen im Flugsimulator

Die Fruchtfliege Drosophila melanogaster ist eine Akrobatin der Lüfte. Doch was befähigt das winzige Insekt zu seinen erstaunlichen Flugkünsten? Am Institut für Neuroinformatik der Universität und der ETH Zürich haben Forschende mit Unterstützung des Schweizerischen Nationalfonds (SNF) eigens einen Windkanal zum Flugsimulator aufgerüstet, mit dem Ziel, die physiologischen Grundlagen des flinken Fliegenflugs zu entschlüsseln.

Die Beobachtung der natürlichen Bewegungsabläufe von Tieren in einem kontrollierten Umfeld ist sowohl für die Neurobiologie, als auch die Ingenieurwissenschaften ein lohnendes Forschungsgebiet. Ein detailliertes Verständnis davon, wie Gehirn und Bewegungsapparat eines Lebewesens Reize verarbeiten, um geeignet darauf zu reagieren, eröffnet der Mikrorobotik neue Perspektiven und erlaubt Rückschlüsse auf neuronale Kontrollmechanismen, die sich im Verlauf der Evolution bewährt haben. Der reflexgesteuerte Flug der Fruchtfliege bietet dazu ein ausgezeichnetes, weil experimentell zugängliches Modell. Drosophila melanogaster ist in der Lage, durch blitzschnelle und fein dosierte Veränderungen ihres Flügelschlags das eigentlich instabile Flugverhalten ihres winzigen Körpers präzise zu kontrollieren.

Kontrolliert gegen den Wind

Um die Geheimnisse der Flugfähigkeit des nur knapp 2,5 Millimeter langen Insekts zu erkunden, hat ein Forscherteam unter der Leitung des Biologen Steven Fry am Institut für Neuroinformatik der Universität und der ETH Zürich mit Unterstützung des Schweizerischen Nationalfonds (SNF) einen Windkanal konstruiert, in dem der freie Flug von Drosophila unter kontrollierten Bedingungen mit einem "Echtzeit-Tracking-System" verfolgt werden kann.

Gleichzeitig wird die Fliege von der Seite mit einer Hochgeschwindigkeitskamera gefilmt, um die Flügelbewegungen und Körperorientierung im selben Zeitraum detailliert aufzuzeichnen. Um sicherzustellen, dass die Probanden in der Versuchsanordnung auch motiviert sind, gegen den Wind zu fliegen, wird der mit 0,3 Meter pro Sekunde verwirbelungsfrei durch den Windkanal säuselnde Luftstrom mit einem für die Fruchtfliegen unwiderstehlichen Essigduft "parfumiert"; so steuern die Fliegen Richtung der vermeintlichen Futterquelle.

Ob und wie schnell sich Drosophila beim Flug gegen den Wind vorwärts bewegt, kontrolliert der Winzling auch im Windkanal mit den Augen. "Die Fliege berechnet ihre Geschwindigkeit anhand der Muster, die an ihrem Gesichtfeld vorbeiziehen", erklärt Steven Fry. Um diesen "optischer Fluss" genannten Sinneseindruck zu kontrollieren, haben Fry und sein Team ihren Windkanal durch seitliche Projektionsflächen zu einem Flugsimulator aufgerüstet. Über diesen künstlichen Horizont können die Forscher nach Belieben breitere oder schmalere Hell-Dunkel-Muster laufen lassen und so den Fruchtfliegen unabhängig von ihrem realen Flugtempo unterschiedliche Geschwindigkeiten vorgaukeln. In der komplexen Versuchsanordnung messen zwei Video-Kameras den dreidimensionalen Flug der Insekten, während der virtuelle optische Fluss automatisch gesteuert wird.

Geschwindigkeitssteuerung durch optischen Fluss

Erst diese Entkoppelung des "Autopiloten" der Fliegen von ihrer realen Bewegung erlaubte den Forschern eine isolierte Analyse der Leistungsfähigkeit der Bewegungskontrolle von Drosophila. "Wir konnten dieses ambitionierte Forschungsvorhaben nur durch die Kombination mehrerer Hochleistungstechnologien realisieren", betont Steven Fry. Zu ihrer Überraschung stellten die Forscher fest, dass das Sehsystem der Fliege visuelle Reize äusserst komplex verarbeitet, die Geschwindigkeit aber dennoch mit einer verblüffend einfachen Strategie steuert.

Und zwar ist die Beschleunigung der Fliege genau proportional zum wahrgenommenen optischen Fluss. Um zu beschleunigen, ändert Drosophila ihre Körperlage ähnlich einem Helikopter, wofür zusätzlich mechanische Sinnesreize über die Körperbewegung verarbeitet werden müssen. Diese Mechanismen werden genauer untersucht, indem die Fliege von der Seite mit einer 1000Hz-Hochgeschwindigkeitskamera gefilmt wurde, die in der Lage ist, die Flügelbewegungen und Körperlage im Detail aufzulösen.

Ziel der Verhaltensstudie im Flugsimulator ist jedoch letztlich die Entschlüsselung der neuronalen Grundlagen für den Fliegenflug. In transgene Fruchtfliegen werden gezielt DNA-Sequenzen eingeschleust, die bestimmte Nervenzellen des Sehsystems ausschalten. Die Forscher können dann bestimmen, welche Rolle die genetisch veränderten Zellen für die korrekte Verarbeitung des optischen Flusses im Fliegenhirn spielen. Erste Resultate der Versuche mit transgenen Fruchtfliegen will das Team von Steven Fry noch in diesem Jahr publizieren.

Kontakt:
Dr. Steven N. Fry
Institut für Neuroinformatik
Universität/ETH Zürich
Winterthurerstrasse 190
CH-8057 Zürich
Tel: +41 (0)44 635 30 45
Fax: +41 (0)44 635 30 53
E-Mail: steven@ini.phys.ethz.ch

| idw
Weitere Informationen:
http://www.snf.ch

Weitere Berichte zu: Drosophila Flugsimulator Fruchtfliege Windkanal

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise