Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein kleiner Molekül-Käfig fängt und verwertet den Eiweiß-Müll außerhalb der Zelle

29.05.2008
Ein Team von Forschern aus Wien, Martinsried, Cardiff und Duisburg-Essen hat jetzt eine Protease Funktion untersucht, welches in der Zellhülle von Bakterien, eine wesentliche Rolle bei der Entsorgung von defekten Proteinen spielt (aktuelle Publikation in PNAS, 27. Mai 2008)

Defekte und überzählige Proteine in und außerhalb von Zellen können extrem gefährlich für den Organismus sein. Da Proteine, die Ihre Funktionstüchtigkeit verloren haben, dazu neigen mit anderen Eiweißmolekülen zu großen Aggregaten zu verklumpen, können sie die lebenswichtigen Zellfunktionen erheblich stören.

In den verschiedenen Bereichen der Zelle und auch außerhalb der Zelle gibt es deshalb spezielle Enzyme, die den Eiweißschrott erkennen und unschädlich machen: die sogenannten Proteasen. Sowohl bei den kleinsten einzelligen Organismen wie beispielsweise Bakterien als auch beim Menschen gibt es eine ganze Gruppe von diesen Müll-Entsorgungs Molekülen.

Ist die Funktion von Proteasen lahmgelegt, so kann dies zu schwerwiegenden Erkrankungen wie Parkinson oder Alzheimer führen. Während die Arbeitsweise von vielen Proteasen innerhalb der Zelle gut charakterisiert ist, ist die Qualitätskontrolle von Proteinen außerhalb der Zelle noch wenig erforscht.

... mehr zu:
»Molekül »Protease »Protein »Zelle

Ein Team von Forschern aus Wien, Martinsried, Cardiff und Duisburg-Essen hat jetzt die Protease Funktion von DegP untersucht, welches in der Zellhülle von Bakterien, also außerhalb der Zelle, eine wesentliche Rolle bei der Entsorgung von defekten Proteinen spielt. "Das DegP ist ein ganz besonderes Molekül, weil es nicht nur über eine Protease-Funktion verfügt und defekte Proteine vernichtet, sondern auch intakte Proteine erkennt", so Professor Ehrmann, Mitverfasser der Studie und Vorstandsvorsitzender des Zentrums für Medizinische Biotechnologie in Duisburg-Essen. "Die gesunden Proteine werden wie in einem Käfig beschützt und sicher an ihren Bestimmungsort transportiert". Bereits 2002 hatten die Forscher die molekulare Struktur des Moleküls aufgeklärt und sowohl dessen Reparatur- als auch die Proteasefunktion beschrieben.

Auf welche Weise dieses intelligente Molekül gesunde von defekten Proteinen unterscheidet, haben die Forscher jetzt im Detail untersucht. Sie haben dabei einen neuen Mechanismus entdeckt, der wahrscheinlich auch auf menschliche Proteasen übertragbar ist, die außerhalb der Zelle arbeiten. Bei der Bindung von defekten Proteinen an dem "Eingangstor" des DegP-Käfigs verändert sich im Innern des Moleküls das Reaktionszentrum derart, dass die Protease-Aktivität in Gang gesetzt wird. Das gesamte Reaktionszentrum bleibt solange aktiv, bis das defekte Protein vollständig abgebaut ist. Dabei wird das Protein in regelmäßigen Abständen, wie mit einem Lineal vermessen, in kleine Bruchstücke zerkleinert. "Für den Organismus ist es wichtig, dass defekte Proteine so schnell wie möglich beseitigt werden", so Tim Clausen vom Institut für Molekulare Pathologie in Wien. "Wir haben beobachtet, dass, sobald der erste Schnitt in das defekte Protein gesetzt wurde, der nachfolgende Verdau sich rasant beschleunigt." Nach dem erfolgreichen Abbau verlassen die kleinen, ungefährlichen Bruchstücke den DegP-Käfig, und die Protease-Aktivität wird wieder abgeschaltet.

Die vorliegende Studie an DegP hat durchaus große Bedeutung für das Verständnis von Neuropathien. Die bakterielle Protease DegP gehört nämlich zur Proteinfamilie der sogenannten HtrA Proteasen, die beim Menschen in Verbindung mit Alzheimer und Parkinson gebracht werden. Die neuen Forschungsergebnisse können nun die Entwicklung von Therapeutika erleichtern. "DegP zeigt uns ganz neue Strategien, die Proteasemaschinen mit kleinen gezielt synthetisierten Molekülen zu aktivieren und diese schrecklichen Krankheiten zu mildern'' meint Nobelpreisträger Robert Huber, der am Max-Planck-Institut für Biochemie in Martinsried und ZMB der Universität Duisburg-Essen forscht.

Originalpublikation:
Tobias Krojer, Karen Pangerl, Juliane Kurt, Justyna Sawa, Christoph Stingl, Karl Mechtler, Robert Huber, and Michael Ehrmann, and Tim Clausen
Interplay of PDZ and protease domain of DegP ensures efficient elimination of misfolded proteins. Proc. Natl. Acad. Sci. USA, 10.1073/pnas.0803392105

http://www.pnas.org/cgi/content/abstract/0803392105v1

Weitere Informationen erhalten Sie von:
Dr. Tim Clausen
Research Institute of Molecular Pathology
Dr. Bohrgasse 7
A-1030 Wien, Österreich;
clausen@imp.univie.ac.at
Prof. Dr. Michael Ehrmann
Zentrum für Medizinische Biotechnologie
Universität Duisburg-Essen
Universitätstr. 2
45141 Essen
Michael.Ehrmann@uni-due.de
Prof. Dr. Robert Huber
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
huber@biochem.mpg.de
Dr. Lydia Didt-Koziel
Zentrum für Medizinische Biotechnologie
Universität Duisburg-Essen
Universitätstr. 2
45141 Essen
zmb@uni-due.de

Dr. Lydia Didt-Koziel | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.pnas.org/cgi/content/abstract/0803392105v1
http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2002/pri0222.htm

Weitere Berichte zu: Molekül Protease Protein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält
22.05.2017 | Ruhr-Universität Bochum

nachricht Myrte schaltet „Anstandsdame“ in Krebszellen aus
22.05.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie