Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein kleiner Molekül-Käfig fängt und verwertet den Eiweiß-Müll außerhalb der Zelle

29.05.2008
Ein Team von Forschern aus Wien, Martinsried, Cardiff und Duisburg-Essen hat jetzt eine Protease Funktion untersucht, welches in der Zellhülle von Bakterien, eine wesentliche Rolle bei der Entsorgung von defekten Proteinen spielt (aktuelle Publikation in PNAS, 27. Mai 2008)

Defekte und überzählige Proteine in und außerhalb von Zellen können extrem gefährlich für den Organismus sein. Da Proteine, die Ihre Funktionstüchtigkeit verloren haben, dazu neigen mit anderen Eiweißmolekülen zu großen Aggregaten zu verklumpen, können sie die lebenswichtigen Zellfunktionen erheblich stören.

In den verschiedenen Bereichen der Zelle und auch außerhalb der Zelle gibt es deshalb spezielle Enzyme, die den Eiweißschrott erkennen und unschädlich machen: die sogenannten Proteasen. Sowohl bei den kleinsten einzelligen Organismen wie beispielsweise Bakterien als auch beim Menschen gibt es eine ganze Gruppe von diesen Müll-Entsorgungs Molekülen.

Ist die Funktion von Proteasen lahmgelegt, so kann dies zu schwerwiegenden Erkrankungen wie Parkinson oder Alzheimer führen. Während die Arbeitsweise von vielen Proteasen innerhalb der Zelle gut charakterisiert ist, ist die Qualitätskontrolle von Proteinen außerhalb der Zelle noch wenig erforscht.

... mehr zu:
»Molekül »Protease »Protein »Zelle

Ein Team von Forschern aus Wien, Martinsried, Cardiff und Duisburg-Essen hat jetzt die Protease Funktion von DegP untersucht, welches in der Zellhülle von Bakterien, also außerhalb der Zelle, eine wesentliche Rolle bei der Entsorgung von defekten Proteinen spielt. "Das DegP ist ein ganz besonderes Molekül, weil es nicht nur über eine Protease-Funktion verfügt und defekte Proteine vernichtet, sondern auch intakte Proteine erkennt", so Professor Ehrmann, Mitverfasser der Studie und Vorstandsvorsitzender des Zentrums für Medizinische Biotechnologie in Duisburg-Essen. "Die gesunden Proteine werden wie in einem Käfig beschützt und sicher an ihren Bestimmungsort transportiert". Bereits 2002 hatten die Forscher die molekulare Struktur des Moleküls aufgeklärt und sowohl dessen Reparatur- als auch die Proteasefunktion beschrieben.

Auf welche Weise dieses intelligente Molekül gesunde von defekten Proteinen unterscheidet, haben die Forscher jetzt im Detail untersucht. Sie haben dabei einen neuen Mechanismus entdeckt, der wahrscheinlich auch auf menschliche Proteasen übertragbar ist, die außerhalb der Zelle arbeiten. Bei der Bindung von defekten Proteinen an dem "Eingangstor" des DegP-Käfigs verändert sich im Innern des Moleküls das Reaktionszentrum derart, dass die Protease-Aktivität in Gang gesetzt wird. Das gesamte Reaktionszentrum bleibt solange aktiv, bis das defekte Protein vollständig abgebaut ist. Dabei wird das Protein in regelmäßigen Abständen, wie mit einem Lineal vermessen, in kleine Bruchstücke zerkleinert. "Für den Organismus ist es wichtig, dass defekte Proteine so schnell wie möglich beseitigt werden", so Tim Clausen vom Institut für Molekulare Pathologie in Wien. "Wir haben beobachtet, dass, sobald der erste Schnitt in das defekte Protein gesetzt wurde, der nachfolgende Verdau sich rasant beschleunigt." Nach dem erfolgreichen Abbau verlassen die kleinen, ungefährlichen Bruchstücke den DegP-Käfig, und die Protease-Aktivität wird wieder abgeschaltet.

Die vorliegende Studie an DegP hat durchaus große Bedeutung für das Verständnis von Neuropathien. Die bakterielle Protease DegP gehört nämlich zur Proteinfamilie der sogenannten HtrA Proteasen, die beim Menschen in Verbindung mit Alzheimer und Parkinson gebracht werden. Die neuen Forschungsergebnisse können nun die Entwicklung von Therapeutika erleichtern. "DegP zeigt uns ganz neue Strategien, die Proteasemaschinen mit kleinen gezielt synthetisierten Molekülen zu aktivieren und diese schrecklichen Krankheiten zu mildern'' meint Nobelpreisträger Robert Huber, der am Max-Planck-Institut für Biochemie in Martinsried und ZMB der Universität Duisburg-Essen forscht.

Originalpublikation:
Tobias Krojer, Karen Pangerl, Juliane Kurt, Justyna Sawa, Christoph Stingl, Karl Mechtler, Robert Huber, and Michael Ehrmann, and Tim Clausen
Interplay of PDZ and protease domain of DegP ensures efficient elimination of misfolded proteins. Proc. Natl. Acad. Sci. USA, 10.1073/pnas.0803392105

http://www.pnas.org/cgi/content/abstract/0803392105v1

Weitere Informationen erhalten Sie von:
Dr. Tim Clausen
Research Institute of Molecular Pathology
Dr. Bohrgasse 7
A-1030 Wien, Österreich;
clausen@imp.univie.ac.at
Prof. Dr. Michael Ehrmann
Zentrum für Medizinische Biotechnologie
Universität Duisburg-Essen
Universitätstr. 2
45141 Essen
Michael.Ehrmann@uni-due.de
Prof. Dr. Robert Huber
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
huber@biochem.mpg.de
Dr. Lydia Didt-Koziel
Zentrum für Medizinische Biotechnologie
Universität Duisburg-Essen
Universitätstr. 2
45141 Essen
zmb@uni-due.de

Dr. Lydia Didt-Koziel | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.pnas.org/cgi/content/abstract/0803392105v1
http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2002/pri0222.htm

Weitere Berichte zu: Molekül Protease Protein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise