Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein kleiner Molekül-Käfig fängt und verwertet den Eiweiß-Müll außerhalb der Zelle

29.05.2008
Ein Team von Forschern aus Wien, Martinsried, Cardiff und Duisburg-Essen hat jetzt eine Protease Funktion untersucht, welches in der Zellhülle von Bakterien, eine wesentliche Rolle bei der Entsorgung von defekten Proteinen spielt (aktuelle Publikation in PNAS, 27. Mai 2008)

Defekte und überzählige Proteine in und außerhalb von Zellen können extrem gefährlich für den Organismus sein. Da Proteine, die Ihre Funktionstüchtigkeit verloren haben, dazu neigen mit anderen Eiweißmolekülen zu großen Aggregaten zu verklumpen, können sie die lebenswichtigen Zellfunktionen erheblich stören.

In den verschiedenen Bereichen der Zelle und auch außerhalb der Zelle gibt es deshalb spezielle Enzyme, die den Eiweißschrott erkennen und unschädlich machen: die sogenannten Proteasen. Sowohl bei den kleinsten einzelligen Organismen wie beispielsweise Bakterien als auch beim Menschen gibt es eine ganze Gruppe von diesen Müll-Entsorgungs Molekülen.

Ist die Funktion von Proteasen lahmgelegt, so kann dies zu schwerwiegenden Erkrankungen wie Parkinson oder Alzheimer führen. Während die Arbeitsweise von vielen Proteasen innerhalb der Zelle gut charakterisiert ist, ist die Qualitätskontrolle von Proteinen außerhalb der Zelle noch wenig erforscht.

... mehr zu:
»Molekül »Protease »Protein »Zelle

Ein Team von Forschern aus Wien, Martinsried, Cardiff und Duisburg-Essen hat jetzt die Protease Funktion von DegP untersucht, welches in der Zellhülle von Bakterien, also außerhalb der Zelle, eine wesentliche Rolle bei der Entsorgung von defekten Proteinen spielt. "Das DegP ist ein ganz besonderes Molekül, weil es nicht nur über eine Protease-Funktion verfügt und defekte Proteine vernichtet, sondern auch intakte Proteine erkennt", so Professor Ehrmann, Mitverfasser der Studie und Vorstandsvorsitzender des Zentrums für Medizinische Biotechnologie in Duisburg-Essen. "Die gesunden Proteine werden wie in einem Käfig beschützt und sicher an ihren Bestimmungsort transportiert". Bereits 2002 hatten die Forscher die molekulare Struktur des Moleküls aufgeklärt und sowohl dessen Reparatur- als auch die Proteasefunktion beschrieben.

Auf welche Weise dieses intelligente Molekül gesunde von defekten Proteinen unterscheidet, haben die Forscher jetzt im Detail untersucht. Sie haben dabei einen neuen Mechanismus entdeckt, der wahrscheinlich auch auf menschliche Proteasen übertragbar ist, die außerhalb der Zelle arbeiten. Bei der Bindung von defekten Proteinen an dem "Eingangstor" des DegP-Käfigs verändert sich im Innern des Moleküls das Reaktionszentrum derart, dass die Protease-Aktivität in Gang gesetzt wird. Das gesamte Reaktionszentrum bleibt solange aktiv, bis das defekte Protein vollständig abgebaut ist. Dabei wird das Protein in regelmäßigen Abständen, wie mit einem Lineal vermessen, in kleine Bruchstücke zerkleinert. "Für den Organismus ist es wichtig, dass defekte Proteine so schnell wie möglich beseitigt werden", so Tim Clausen vom Institut für Molekulare Pathologie in Wien. "Wir haben beobachtet, dass, sobald der erste Schnitt in das defekte Protein gesetzt wurde, der nachfolgende Verdau sich rasant beschleunigt." Nach dem erfolgreichen Abbau verlassen die kleinen, ungefährlichen Bruchstücke den DegP-Käfig, und die Protease-Aktivität wird wieder abgeschaltet.

Die vorliegende Studie an DegP hat durchaus große Bedeutung für das Verständnis von Neuropathien. Die bakterielle Protease DegP gehört nämlich zur Proteinfamilie der sogenannten HtrA Proteasen, die beim Menschen in Verbindung mit Alzheimer und Parkinson gebracht werden. Die neuen Forschungsergebnisse können nun die Entwicklung von Therapeutika erleichtern. "DegP zeigt uns ganz neue Strategien, die Proteasemaschinen mit kleinen gezielt synthetisierten Molekülen zu aktivieren und diese schrecklichen Krankheiten zu mildern'' meint Nobelpreisträger Robert Huber, der am Max-Planck-Institut für Biochemie in Martinsried und ZMB der Universität Duisburg-Essen forscht.

Originalpublikation:
Tobias Krojer, Karen Pangerl, Juliane Kurt, Justyna Sawa, Christoph Stingl, Karl Mechtler, Robert Huber, and Michael Ehrmann, and Tim Clausen
Interplay of PDZ and protease domain of DegP ensures efficient elimination of misfolded proteins. Proc. Natl. Acad. Sci. USA, 10.1073/pnas.0803392105

http://www.pnas.org/cgi/content/abstract/0803392105v1

Weitere Informationen erhalten Sie von:
Dr. Tim Clausen
Research Institute of Molecular Pathology
Dr. Bohrgasse 7
A-1030 Wien, Österreich;
clausen@imp.univie.ac.at
Prof. Dr. Michael Ehrmann
Zentrum für Medizinische Biotechnologie
Universität Duisburg-Essen
Universitätstr. 2
45141 Essen
Michael.Ehrmann@uni-due.de
Prof. Dr. Robert Huber
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
huber@biochem.mpg.de
Dr. Lydia Didt-Koziel
Zentrum für Medizinische Biotechnologie
Universität Duisburg-Essen
Universitätstr. 2
45141 Essen
zmb@uni-due.de

Dr. Lydia Didt-Koziel | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.pnas.org/cgi/content/abstract/0803392105v1
http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2002/pri0222.htm

Weitere Berichte zu: Molekül Protease Protein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an
28.06.2017 | Johannes Gutenberg-Universität Mainz

nachricht JUMP-1 – ein magnetisches Polymer aus Jena
28.06.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ultra-sensitiv dank quantenmechanischer Verschränkung

28.06.2017 | Physik Astronomie

Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an

28.06.2017 | Biowissenschaften Chemie

Umfangreiche Fördermaßnahmen für Forschung an Chromatin, Nebenniere und Krebstherapie

28.06.2017 | Förderungen Preise