Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Scharfer Blick in die Tiefe der Zelle

23.05.2008
Max-Planck-Forscher verbessern die 3D-Auflösung von Fluoreszenzmikroskopen

Wissenschaftler des Max-Planck-Instituts für biophysikalische Chemie in Göttingen haben einen neuen Meilenstein in der Nanoskopie erreicht. Mit ihrem neu entwickelten Fluoreszenzmikroskop erreichten die Forscher erstmals eine Auflösung von unter 45 Nanometern in allen drei Raumrichtungen - 5-fach besser in der Bildebene und mehr als 10-mal schärfer in der Tiefe gegenüber herkömmlichen Lichtmikroskopen.

Mit dem neuen "Nanoskop" lassen sich selbst solche Proteine untersuchen, die tief im Inneren von Zell-Organellen wie Mitochondrien - den Kraftwerken der Zelle - verborgen sind. Für die vielen Proteine, die auf kompliziertem Wege in die Mitochondrien hineintransportiert werden müssen, fungieren so genannte TOM-Proteinkomplexe als eine Art "Eingangstor". Was Biochemiker vermuteten, konnten die Göttinger Forscher zusammen mit Kollegen vom Deutschen Krebsforschungszentrum (Heidelberg) erstmals direkt im Mikroskop erkennen. TOM-Proteinkomplexe schließen sich in bestimmten Bereichen auf der äußeren Membran der Mitochondrien zusammen. Diese Bereiche könnten beim Import von Proteinen in die Mitochondrien eine entscheidende Rolle spielen. (Nature Methods, 18. Mai 2008).

Wie Viren eine Zelle angreifen, Nervenzellen Signale weiterleiten oder Proteine in der Zelle arbeiten - dies alles spielt sich in der Nanowelt der Zelle ab, die unserem Auge verborgen bleibt. Um diese für uns sehr wichtige Welt dennoch zu beobachten, müssen wir die Objekte erheblich vergrößern. Elektronen- oder Rastertunnelmikroskope erlauben zwar die dafür nötige hohe Auflösung, doch haben sie einen entscheidenden Nachteil: Lebende, oder zumindest morphologisch intakte Zellen lassen sich damit nicht beobachten. Dies erlauben nur "berührungsfreie" Verfahren wie die Lichtmikroskopie. Doch für Einblicke in die Nanowelt ist die herkömmliche Lichtmikroskopie nicht scharf genug. Wegen der Wellennatur des Lichts und der damit verbundenen Beugungsgrenze schien die Auflösung der Lichtmikroskopie an einer scheinbar unüberwindbaren Grenze angelangt, die mit 200 bis 300 Nanometern etwa der halben Wellenlänge des Lichts entspricht.

Kombination zweier Mikroskopie-Techniken ermöglicht superscharfe Auflösung

Mit gleich zwei neu entwickelten Fluoreszenz-Mikroskopen, dem 4Pi-Mikroskop und dem STED-(Stimulated Emission Depletion)-Mikroskop, stellten Stefan Hell und seine Mitarbeiter allgemein akzeptierte Überzeugungen auf den Kopf und steigerten die Auflösung der Lichtmikroskopie dramatisch. Während das 4Pi-Mikroskop bereits eine Auflösung von 100 bis 200 Nanometern in 3D erlaubt, ist das STED-Mikroskop sogar noch wesentlich schärfer; Details von bis zu 20-30 Nanometern lassen sich damit beobachten. Allerdings erreichte man diese Auflösung bisher nur in zwei Raumrichtungen, nicht aber in der Tiefe. Dem Forscherteam um Stefan Hell und Alexander Egner war das noch bei weitem nicht scharf genug. Durch geschicktes Kombinieren der 4Pi- und der STED-Mikroskopie gelang es den Wissenschaftlern nun, die Vorteile beider Methoden zu vereinen. Sie verkleinerten den angeregten Bereich einer Probe (den fokalen Fleck) auf eine Kugel mit einem Durchmesser von unter 45 Nanometern und erreichten damit erstmals eine superscharfe Auflösung in 3D. Die Forscher konnten dabei auch auf Entwicklungen der ebenfalls von Hell geleiteten Partnergruppe "High Resolution Optical Microscopy" am Deutschen Krebsforschungszentrum (Heidelberg) zurückgreifen. Die Deutsche Forschungsgemeinschaft fördert dieses Projekt innerhalb des SFB 755 "Nanoscale Photonic Imaging", der an der Göttinger Universität eingerichtet wurde.

3D-Blick auf Proteine in den Kraftwerken der Zelle

Was das neue "Nanoskop" sichtbar macht, ist für den Laien auf den ersten Blick wenig spektakulär. Doch mit geübtem Blick lassen sich hier Mitochondrien innerhalb einer intakten Zelle erkennen, in deren äußerer Membran TOM20-Proteine eingebaut sind. Die Kraftwerke selbst sind im Durchmesser nur etwa 200 bis 400 Nanometer groß. In ihr Inneres zu blicken oder ihre beiden Membranen im Mikroskop zu erkennen, ohne die Zelle dabei zu zerstören, war bisher unmöglich. "Mit Hilfe des neuen isoSTED-Mikroskops können wir nun Aufbau und Funktion von Mitochondrien in einer Zelle in bisher ungekannter 3D-Auflösung untersuchen. Dank des runden Lichtflecks ist die Schärfe in allen Richtungen gleichermaßen hoch", erklärt Roman Schmidt, der das neue Mikroskop im Rahmen seiner Doktorarbeit maßgeblich entwickelt hat. So sahen die Forscher erstmals direkt, was Ergebnisse von Biochemikern bereits vermuten ließen: Mehrere TOM20-Proteine finden sich in der äußeren Membran der Mitochondrien zu so genannten Clustern zusammen. Diese Cluster könnten beim Transport von Proteinen ins Innere der Mitochondrien einen entscheidenden Part übernehmen. Aber das neue isoSTED-Mikroskop bietet noch einiges mehr: Die Methode lässt sich auf mehrere Farbkanäle ausweiten. So konnten die Wissenschaftler durch Verwendung eines zweiten Farbstoffs neben den TOM20-Proteinen gleichzeitig auch Proteine sichtbar machen, die sich im tief im Inneren der Mitochondrien verbergen.

Zukünftig Lebensvorgänge im Inneren von Zellen in 3D filmen

"Mit der bis zu 10-fach verbesserten Auflösung gegenüber herkömmlichen Mikroskopen ist die Technik noch bei weitem nicht ausgereizt. Prinzipiell lässt sich der fokale Fleck noch beliebig verkleinern", erklärt Alexander Egner. "Außerdem wird es zukünftig möglich sein, die Methode mit schnellen Aufnahmetechniken zu kombinieren, um die Vorgänge im Inneren lebender Zellen in 3D zu filmen", so Egner. Die Göttinger Forscher versprechen sich davon wichtige neue Erkenntnisse in der Gesundheitsforschung für die Entwicklung alternativer Therapieformen und Medikamente.

Kontakt:
Prof. Dr. Stefan W. Hell,
Max-Planck-Institut für biophysikalische Chemie,
Tel. +49 551 201-2500, -2503,
Fax +49 551 201-2505,
E-Mail: shell@gwdg.de
Dr. Alexander Egner
Max-Planck-Institut für biophysikalische Chemie,
Tel. +49 551 201-2555,
Fax +49 551 201-2505,
E-Mail: aegner@gwdg.de
Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit,
Max-Planck-Institut für biophysikalische Chemie,
Tel. +49 551 201-1304,
Fax +49 551 201-1151,
E-Mail: pr@mpibpc.mpg.de

Dr. Carmen Rotte | idw
Weitere Informationen:
http://www.mpibpc.mpg.de/groups/pr/PR/2008/08_11/
http://www.mpibpc.mpg.de/groups/hell/

Weitere Berichte zu: Lichtmikroskopie Membran Mitochondrium Nanometer Protein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE