Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Scharfer Blick in die Tiefe der Zelle

23.05.2008
Max-Planck-Forscher verbessern die 3D-Auflösung von Fluoreszenzmikroskopen

Wissenschaftler des Max-Planck-Instituts für biophysikalische Chemie in Göttingen haben einen neuen Meilenstein in der Nanoskopie erreicht. Mit ihrem neu entwickelten Fluoreszenzmikroskop erreichten die Forscher erstmals eine Auflösung von unter 45 Nanometern in allen drei Raumrichtungen - 5-fach besser in der Bildebene und mehr als 10-mal schärfer in der Tiefe gegenüber herkömmlichen Lichtmikroskopen.

Mit dem neuen "Nanoskop" lassen sich selbst solche Proteine untersuchen, die tief im Inneren von Zell-Organellen wie Mitochondrien - den Kraftwerken der Zelle - verborgen sind. Für die vielen Proteine, die auf kompliziertem Wege in die Mitochondrien hineintransportiert werden müssen, fungieren so genannte TOM-Proteinkomplexe als eine Art "Eingangstor". Was Biochemiker vermuteten, konnten die Göttinger Forscher zusammen mit Kollegen vom Deutschen Krebsforschungszentrum (Heidelberg) erstmals direkt im Mikroskop erkennen. TOM-Proteinkomplexe schließen sich in bestimmten Bereichen auf der äußeren Membran der Mitochondrien zusammen. Diese Bereiche könnten beim Import von Proteinen in die Mitochondrien eine entscheidende Rolle spielen. (Nature Methods, 18. Mai 2008).

Wie Viren eine Zelle angreifen, Nervenzellen Signale weiterleiten oder Proteine in der Zelle arbeiten - dies alles spielt sich in der Nanowelt der Zelle ab, die unserem Auge verborgen bleibt. Um diese für uns sehr wichtige Welt dennoch zu beobachten, müssen wir die Objekte erheblich vergrößern. Elektronen- oder Rastertunnelmikroskope erlauben zwar die dafür nötige hohe Auflösung, doch haben sie einen entscheidenden Nachteil: Lebende, oder zumindest morphologisch intakte Zellen lassen sich damit nicht beobachten. Dies erlauben nur "berührungsfreie" Verfahren wie die Lichtmikroskopie. Doch für Einblicke in die Nanowelt ist die herkömmliche Lichtmikroskopie nicht scharf genug. Wegen der Wellennatur des Lichts und der damit verbundenen Beugungsgrenze schien die Auflösung der Lichtmikroskopie an einer scheinbar unüberwindbaren Grenze angelangt, die mit 200 bis 300 Nanometern etwa der halben Wellenlänge des Lichts entspricht.

Kombination zweier Mikroskopie-Techniken ermöglicht superscharfe Auflösung

Mit gleich zwei neu entwickelten Fluoreszenz-Mikroskopen, dem 4Pi-Mikroskop und dem STED-(Stimulated Emission Depletion)-Mikroskop, stellten Stefan Hell und seine Mitarbeiter allgemein akzeptierte Überzeugungen auf den Kopf und steigerten die Auflösung der Lichtmikroskopie dramatisch. Während das 4Pi-Mikroskop bereits eine Auflösung von 100 bis 200 Nanometern in 3D erlaubt, ist das STED-Mikroskop sogar noch wesentlich schärfer; Details von bis zu 20-30 Nanometern lassen sich damit beobachten. Allerdings erreichte man diese Auflösung bisher nur in zwei Raumrichtungen, nicht aber in der Tiefe. Dem Forscherteam um Stefan Hell und Alexander Egner war das noch bei weitem nicht scharf genug. Durch geschicktes Kombinieren der 4Pi- und der STED-Mikroskopie gelang es den Wissenschaftlern nun, die Vorteile beider Methoden zu vereinen. Sie verkleinerten den angeregten Bereich einer Probe (den fokalen Fleck) auf eine Kugel mit einem Durchmesser von unter 45 Nanometern und erreichten damit erstmals eine superscharfe Auflösung in 3D. Die Forscher konnten dabei auch auf Entwicklungen der ebenfalls von Hell geleiteten Partnergruppe "High Resolution Optical Microscopy" am Deutschen Krebsforschungszentrum (Heidelberg) zurückgreifen. Die Deutsche Forschungsgemeinschaft fördert dieses Projekt innerhalb des SFB 755 "Nanoscale Photonic Imaging", der an der Göttinger Universität eingerichtet wurde.

3D-Blick auf Proteine in den Kraftwerken der Zelle

Was das neue "Nanoskop" sichtbar macht, ist für den Laien auf den ersten Blick wenig spektakulär. Doch mit geübtem Blick lassen sich hier Mitochondrien innerhalb einer intakten Zelle erkennen, in deren äußerer Membran TOM20-Proteine eingebaut sind. Die Kraftwerke selbst sind im Durchmesser nur etwa 200 bis 400 Nanometer groß. In ihr Inneres zu blicken oder ihre beiden Membranen im Mikroskop zu erkennen, ohne die Zelle dabei zu zerstören, war bisher unmöglich. "Mit Hilfe des neuen isoSTED-Mikroskops können wir nun Aufbau und Funktion von Mitochondrien in einer Zelle in bisher ungekannter 3D-Auflösung untersuchen. Dank des runden Lichtflecks ist die Schärfe in allen Richtungen gleichermaßen hoch", erklärt Roman Schmidt, der das neue Mikroskop im Rahmen seiner Doktorarbeit maßgeblich entwickelt hat. So sahen die Forscher erstmals direkt, was Ergebnisse von Biochemikern bereits vermuten ließen: Mehrere TOM20-Proteine finden sich in der äußeren Membran der Mitochondrien zu so genannten Clustern zusammen. Diese Cluster könnten beim Transport von Proteinen ins Innere der Mitochondrien einen entscheidenden Part übernehmen. Aber das neue isoSTED-Mikroskop bietet noch einiges mehr: Die Methode lässt sich auf mehrere Farbkanäle ausweiten. So konnten die Wissenschaftler durch Verwendung eines zweiten Farbstoffs neben den TOM20-Proteinen gleichzeitig auch Proteine sichtbar machen, die sich im tief im Inneren der Mitochondrien verbergen.

Zukünftig Lebensvorgänge im Inneren von Zellen in 3D filmen

"Mit der bis zu 10-fach verbesserten Auflösung gegenüber herkömmlichen Mikroskopen ist die Technik noch bei weitem nicht ausgereizt. Prinzipiell lässt sich der fokale Fleck noch beliebig verkleinern", erklärt Alexander Egner. "Außerdem wird es zukünftig möglich sein, die Methode mit schnellen Aufnahmetechniken zu kombinieren, um die Vorgänge im Inneren lebender Zellen in 3D zu filmen", so Egner. Die Göttinger Forscher versprechen sich davon wichtige neue Erkenntnisse in der Gesundheitsforschung für die Entwicklung alternativer Therapieformen und Medikamente.

Kontakt:
Prof. Dr. Stefan W. Hell,
Max-Planck-Institut für biophysikalische Chemie,
Tel. +49 551 201-2500, -2503,
Fax +49 551 201-2505,
E-Mail: shell@gwdg.de
Dr. Alexander Egner
Max-Planck-Institut für biophysikalische Chemie,
Tel. +49 551 201-2555,
Fax +49 551 201-2505,
E-Mail: aegner@gwdg.de
Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit,
Max-Planck-Institut für biophysikalische Chemie,
Tel. +49 551 201-1304,
Fax +49 551 201-1151,
E-Mail: pr@mpibpc.mpg.de

Dr. Carmen Rotte | idw
Weitere Informationen:
http://www.mpibpc.mpg.de/groups/pr/PR/2008/08_11/
http://www.mpibpc.mpg.de/groups/hell/

Weitere Berichte zu: Lichtmikroskopie Membran Mitochondrium Nanometer Protein Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie