Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom Atemgift zum Hoffnungsträger für die Medizin

02.05.2008
Biophysiker der Universität Jena klären einen molekularen Wirkmechanismus von Kohlenmonoxid auf

Es ist ein heimtückisches Atemgift - man kann es weder sehen, schmecken noch riechen. Wer es unbemerkt einatmet, den kann es das Leben kosten: Kohlenmonoxid. Das Gas entsteht bei Schwelbränden und kommt beispielsweise in Autoabgasen vor. Und doch sehen Mediziner und Grundlagenforscher weltweit in dem tödlichen Gas derzeit einen großen Hoffnungsträger für die Medizin.

"Kohlendioxid wird im Körper selbst produziert", erläutert Prof. Dr. Stefan H. Heinemann von der Friedrich-Schiller-Universität Jena. "Dort kann es durchaus positive Wirkungen entfalten", so der Lehrstuhlinhaber für Biophysik weiter. Kohlenmonoxid, das beim Abbau des körpereigenen Blutfarbstoffs Hämoglobin frei wird, führe beispielsweise zur Weitung von Blutgefäßen. Das wirkt blutdrucksenkend und kann die Durchblutung von inneren Organen, wie Leber oder Nieren verbessern.

"Diese positiven Effekte sind erst seit kurzer Zeit überhaupt bekannt", so Prof. Heinemann. Der Biophysiker und sein Team haben gemeinsam mit Kollegen der University of Pennsylvania in Philadelphia nun erste Anhaltspunkte dafür gefunden, worauf diese Wirkung beruht. "Wir konnten zeigen, dass Kohlenmonoxid direkt an einen sogenannten Ionenkanal bindet", erläutert Heinemann. Ionenkanäle sind Eiweißmoleküle, die verschließbare Poren in Zellmembranen bilden. Auf bestimmte zelluläre Signale hin öffnen sich die Kanäle und lassen bestimmte Ionen passieren. So auch im Falle des Kanals, an den sich Kohlenmonoxid bindet. "Durch die Bindung öffnet sich der Kanal und lässt Kalium-Ionen aus den Zellen ausfließen", so Heinemann. In den Zellen von Blutgefäßen, wo diese Ionenkanäle vorkommen, führt der Kaliumausstrom zur Erschlaffung der Gefäßwände.

Ihre Ergebnisse haben die Forscher aus Jena und Philadelphia kürzlich in den renommierten Fachzeitschriften "Nature Structural and Molecular Biology" und "Proceedings of the National Academy of Sciences" veröffentlicht und damit unter ihren Fachkollegen für Aufsehen gesorgt. "Hier öffnet sich ein ganz neues Forschungsgebiet", schwärmt Prof. Heinemann, der dieses Thema in den kommenden Jahren von Jena aus intensiv bearbeiten will. Dazu hat sich mittlerweile eine interdisziplinäre Arbeitsgruppe gebildet, an der neben Heinemanns Team auch Chemiker und Biochemiker der Uni Jena und des Instituts für Photonische Technologien (IPHT) sowie Neurologen und Intensivmediziner des Jenaer Uniklinikums beteiligt sind. "Uns interessiert z. B. die Frage wie die Konformationsänderung aussieht, die Kohlenmonoxid durch seine Bindung an den Ionenkanal auslöst", erläutert Prof. Heinemann. Auch die Frage, unter welchen Bedingungen Kohlenmonoxid im Körper entsteht, wollen die Forscher beantworten.

Auch wenn dies zunächst reine Grundlagenforschung sein wird, birgt das Wissen um die Wirkungen von Kohlenmonoxid großes Potenzial für die klinische Anwendung. "Wie aus Tierversuchen hervorgeht, nimmt Kohlenmonoxid auch Einfluss auf das Immunsystem", so Heinemann. So hat sich beispielsweise gezeigt, dass das Gas die Abstoßung von Organtransplantaten verringern kann. Ob dieser Effekt ebenfalls auf der von ihm und seinen amerikanischen Kollegen entdeckten Wechselwirkung von Kohlenmonoxid mit Ionenkanälen zurückzuführen sei, bleibt noch zu klären.

Originalpublikationen:
Hou S, Xu R, Heinemann SH, Hoshi T. The RCK1 high-affinity Ca2+ sensor confers carbon monoxide sensitivity to Slo1 BK channels. Proceedings of the National Academy of Sciences (2008), 105, 4039-4043

Hou S, Xu R, Heinemann SH, Hoshi T. Reciprocal regulation of the Ca2+ and H+ sensitivity in the SLO1 BK channel conferred by the RCK1 domain. Nature Structural and Molecular Biology (2008), 15(4), 403-410

Kontakt:
Prof. Dr. Stefan H. Heinemann
Zentrum für molekulare Biomedizin
Institut für Biochemie und Biophysik der Friedrich-Schiller-Universität Jena
Hans-Knöll-Str. 2, 07745 Jena
Tel.: 03641 / 9395650
E-Mail: stefan.h.heinemann[at]uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Berichte zu: Biophysik Ionenkanal Kohlenmonoxid

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie