Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RUB-Wissenschaftler lösen das Rätsel basischer Lösungen

27.06.2002


Elementare Annahmen als irreführend entlarvt
NATURE berichtet: Wie Reaktionen in Basen ablaufen


Die Übertragung von elektrischer Ladung in wässrigen Basen läuft anders ab, als Generationen von Wissenschaftlern bisher angenommen haben. Das konnten nach mehrjähriger Zusammenarbeit Mark Tuckerman (New York University), Dominik Marx (Fakultät für Chemie der RUB) und Michele Parrinello (Swiss Center for Scientific Computing, ETH Zürich) mit einem selbstgeschriebenen Computerprogramm und einem Großrechner zeigen. Sie fanden heraus, dass die einfachste Reaktion in Basen durch quantenmechanische Effekte beeinflusst wird. Zudem läuft sie nicht spiegelbildlich zu der in Säuren ab, so wie es seit fast 100 Jahren allgemein angenommen wurde. Über die Ergebnisse berichtet das Magazin NATURE in seiner heutigen Ausgabe.

Bisher unklar: Wie Basen genau funktionieren

Zunutze machen sich die Menschen die Reaktionsbedingungen in basischen Lösungen schon lange, etwa für einen der ältesten großchemischen Prozesse: die Seifenherstellung. Auch für die Biochemie und die organische Synthese sind basische Bedingungen wesentlich. Wie genau basische Lösungen auf atomistischer Ebene beschaffen sind, war jedoch bisher unklar. Basen (pH-Wert >7) zeichnen sich gegenüber neutralen Lösungen durch einen Überschuss von OH- Ionen aus. Sie sind die natürlichen Gegenspieler des H+ Ions, von dem Säuren (pH-Wert <7) einen Überschuss enthalten. In neutralen Lösungen wie Wasser herrscht ein Gleichgewicht zwischen beiden Ionen (pH-Wert = 7).

Ionen verschieben ihre Ladung über H-Brücken

Chemische Reaktionen laufen i.d.R. in saurem und basischem Milieu ganz unterschiedlich ab. Seit langer Zeit ist bekannt, dass wässrige basische Lösungen elektrischen Strom extrem gut leiten, d.h. die überzähligen Ladungsträger OH- müssen eine sehr große Mobilität in Wasser besitzen. Die Wissenschaft weiß, dass nicht die OH- Ionen selbst wandern, sondern dass nur ihre Ladungen entlang von Wasserstoffbrückenbindungen verschoben werden. Dabei gingen die Forscher bisher davon aus, dass sich das OH- Ion spiegelbildlich analog zu dem besser untersuchten H+ Ion verhält.

Nach den Berechnungen: Umdenken

In Säuren befindet sich das H+ Ion oft zwischen zwei Wassermolekülen, schematisch [H2O...H...OH2 ]+. Es kann jedoch fast ohne Energieaufwand verschoben werden, wodurch ein H3O+ Molekül entsteht, das seinerseits über Wasserstoffbrücken von drei Wassermolekülen umgegeben ist, schematisch H3O+(H2O)3. Die Ladung wandert dabei gleich über mehrere Bindungslängen. Noch im Jahr 2000 erschien eine Arbeit, der die Annahme zugrunde lag, OH- und damit Basen verhielten sich genauso. Die analogen zwei Komplexe seien also [HO...H...OH]- und OH-(H2O)3. Die Forschergruppe um Prof. Marx entwickelte ein Computerprogramm, das sowohl die Elektronen als auch die Atomkerne quantenmechanisch beschreibt. Sein Einsatz auf einem Großrechner machte die althergebrachte Vorstellung anderer Forscher zunichte.

Das Tunneln beschleunigt die Reaktion

Es zeigte sich, dass das OH- Ion in Wasser nicht wie bisher angenommen von drei, sondern von vier Wassermolekülen umgeben ist (siehe Teilabbildung a). Dieses Phänomen bezeichnen die Wissenschaftler als "Hyperkoordination". Damit ein H leicht verschoben werden kann, muss dieser Komplex zuerst ein Wassermolekül verlieren (siehe b und c), was ein relativ langsamer Schritt ist. Nach dieser "Aktivierung" kann ein [HO...H...OH]- Komplex entstehen (siehe d), welcher sich nun wieder in ein von vier Wassermolekülen umgebenes OH- Ion umwandelt (siehe e und f). Nach diesen Umlagerungen ist der OH- Defekt um eine Wasserstoffbrückenlänge gewandert (vgl. f mit a). Dieser Komplex existiert in Basen allerdings nur als sog. "Übergangskomplex" und ist damit nicht stabil wie im sauren Milieu. Die Forscher konnten schließlich zeigen, dass quantenmechanische Effekte, insbesondere das Tunneln eines Protons, die Umwandlung von OH-(H2O)3 merklich beschleunigen; dieser Effekt ist bei Säuren völlig vernachlässigbar. Ihr Fazit: das OH- Ion in Wasser verhält sich nicht wie das Spiegelbild von H+, womit die bisherigen Lehrbuch-Vorstellungen von wässrigen Basen über Bord zu werfen sind.

Titelaufnahme

M.E. Tuckerman; D. Marx; M. Parrinello: "The nature and transport mechanism of hydrated hydroxide ions in aqueous solution" In: Nature (London), 27. Juni 2002.

Weitere Informationen

Prof. Dr. Dominik Marx, Lehrstuhl für Theoretische Chemie, Fakultät für Chemie der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-28083, Fax: 0234/32-14045, E-Mail: dominik.marx@theochem.ruhr-uni-bochum.de,.

Dr. Josef König | idw
Weitere Informationen:
http://www.theochem.ruhr-uni-bochum.de/

Weitere Berichte zu: Basen Ion OH- Säure Wassermolekül

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kaltwasserkorallen: Versauerung schadet, Wärme hilft
27.04.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Auf dem Gipfel der Evolution – Flechten bei der Artbildung zugeschaut
27.04.2017 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

Jenaer Akustik-Tag: Belastende Geräusche minimieren - für den Schutz des Gehörs

27.04.2017 | Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

VLC 200 GT von EMAG: Neue passgenaue Dreh-Schleif-Lösung für die Bearbeitung von Pkw-Getrieberädern

27.04.2017 | Maschinenbau

Induktive Lötprozesse von eldec: Schneller, präziser und sparsamer verlöten

27.04.2017 | Maschinenbau

Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

27.04.2017 | Informationstechnologie