Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RUB-Wissenschaftler lösen das Rätsel basischer Lösungen

27.06.2002


Elementare Annahmen als irreführend entlarvt
NATURE berichtet: Wie Reaktionen in Basen ablaufen


Die Übertragung von elektrischer Ladung in wässrigen Basen läuft anders ab, als Generationen von Wissenschaftlern bisher angenommen haben. Das konnten nach mehrjähriger Zusammenarbeit Mark Tuckerman (New York University), Dominik Marx (Fakultät für Chemie der RUB) und Michele Parrinello (Swiss Center for Scientific Computing, ETH Zürich) mit einem selbstgeschriebenen Computerprogramm und einem Großrechner zeigen. Sie fanden heraus, dass die einfachste Reaktion in Basen durch quantenmechanische Effekte beeinflusst wird. Zudem läuft sie nicht spiegelbildlich zu der in Säuren ab, so wie es seit fast 100 Jahren allgemein angenommen wurde. Über die Ergebnisse berichtet das Magazin NATURE in seiner heutigen Ausgabe.

Bisher unklar: Wie Basen genau funktionieren

Zunutze machen sich die Menschen die Reaktionsbedingungen in basischen Lösungen schon lange, etwa für einen der ältesten großchemischen Prozesse: die Seifenherstellung. Auch für die Biochemie und die organische Synthese sind basische Bedingungen wesentlich. Wie genau basische Lösungen auf atomistischer Ebene beschaffen sind, war jedoch bisher unklar. Basen (pH-Wert >7) zeichnen sich gegenüber neutralen Lösungen durch einen Überschuss von OH- Ionen aus. Sie sind die natürlichen Gegenspieler des H+ Ions, von dem Säuren (pH-Wert <7) einen Überschuss enthalten. In neutralen Lösungen wie Wasser herrscht ein Gleichgewicht zwischen beiden Ionen (pH-Wert = 7).

Ionen verschieben ihre Ladung über H-Brücken

Chemische Reaktionen laufen i.d.R. in saurem und basischem Milieu ganz unterschiedlich ab. Seit langer Zeit ist bekannt, dass wässrige basische Lösungen elektrischen Strom extrem gut leiten, d.h. die überzähligen Ladungsträger OH- müssen eine sehr große Mobilität in Wasser besitzen. Die Wissenschaft weiß, dass nicht die OH- Ionen selbst wandern, sondern dass nur ihre Ladungen entlang von Wasserstoffbrückenbindungen verschoben werden. Dabei gingen die Forscher bisher davon aus, dass sich das OH- Ion spiegelbildlich analog zu dem besser untersuchten H+ Ion verhält.

Nach den Berechnungen: Umdenken

In Säuren befindet sich das H+ Ion oft zwischen zwei Wassermolekülen, schematisch [H2O...H...OH2 ]+. Es kann jedoch fast ohne Energieaufwand verschoben werden, wodurch ein H3O+ Molekül entsteht, das seinerseits über Wasserstoffbrücken von drei Wassermolekülen umgegeben ist, schematisch H3O+(H2O)3. Die Ladung wandert dabei gleich über mehrere Bindungslängen. Noch im Jahr 2000 erschien eine Arbeit, der die Annahme zugrunde lag, OH- und damit Basen verhielten sich genauso. Die analogen zwei Komplexe seien also [HO...H...OH]- und OH-(H2O)3. Die Forschergruppe um Prof. Marx entwickelte ein Computerprogramm, das sowohl die Elektronen als auch die Atomkerne quantenmechanisch beschreibt. Sein Einsatz auf einem Großrechner machte die althergebrachte Vorstellung anderer Forscher zunichte.

Das Tunneln beschleunigt die Reaktion

Es zeigte sich, dass das OH- Ion in Wasser nicht wie bisher angenommen von drei, sondern von vier Wassermolekülen umgeben ist (siehe Teilabbildung a). Dieses Phänomen bezeichnen die Wissenschaftler als "Hyperkoordination". Damit ein H leicht verschoben werden kann, muss dieser Komplex zuerst ein Wassermolekül verlieren (siehe b und c), was ein relativ langsamer Schritt ist. Nach dieser "Aktivierung" kann ein [HO...H...OH]- Komplex entstehen (siehe d), welcher sich nun wieder in ein von vier Wassermolekülen umgebenes OH- Ion umwandelt (siehe e und f). Nach diesen Umlagerungen ist der OH- Defekt um eine Wasserstoffbrückenlänge gewandert (vgl. f mit a). Dieser Komplex existiert in Basen allerdings nur als sog. "Übergangskomplex" und ist damit nicht stabil wie im sauren Milieu. Die Forscher konnten schließlich zeigen, dass quantenmechanische Effekte, insbesondere das Tunneln eines Protons, die Umwandlung von OH-(H2O)3 merklich beschleunigen; dieser Effekt ist bei Säuren völlig vernachlässigbar. Ihr Fazit: das OH- Ion in Wasser verhält sich nicht wie das Spiegelbild von H+, womit die bisherigen Lehrbuch-Vorstellungen von wässrigen Basen über Bord zu werfen sind.

Titelaufnahme

M.E. Tuckerman; D. Marx; M. Parrinello: "The nature and transport mechanism of hydrated hydroxide ions in aqueous solution" In: Nature (London), 27. Juni 2002.

Weitere Informationen

Prof. Dr. Dominik Marx, Lehrstuhl für Theoretische Chemie, Fakultät für Chemie der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-28083, Fax: 0234/32-14045, E-Mail: dominik.marx@theochem.ruhr-uni-bochum.de,.

Dr. Josef König | idw
Weitere Informationen:
http://www.theochem.ruhr-uni-bochum.de/

Weitere Berichte zu: Basen Ion OH- Säure Wassermolekül

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie