Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RUB-Wissenschaftler lösen das Rätsel basischer Lösungen

27.06.2002


Elementare Annahmen als irreführend entlarvt
NATURE berichtet: Wie Reaktionen in Basen ablaufen


Die Übertragung von elektrischer Ladung in wässrigen Basen läuft anders ab, als Generationen von Wissenschaftlern bisher angenommen haben. Das konnten nach mehrjähriger Zusammenarbeit Mark Tuckerman (New York University), Dominik Marx (Fakultät für Chemie der RUB) und Michele Parrinello (Swiss Center for Scientific Computing, ETH Zürich) mit einem selbstgeschriebenen Computerprogramm und einem Großrechner zeigen. Sie fanden heraus, dass die einfachste Reaktion in Basen durch quantenmechanische Effekte beeinflusst wird. Zudem läuft sie nicht spiegelbildlich zu der in Säuren ab, so wie es seit fast 100 Jahren allgemein angenommen wurde. Über die Ergebnisse berichtet das Magazin NATURE in seiner heutigen Ausgabe.

Bisher unklar: Wie Basen genau funktionieren

Zunutze machen sich die Menschen die Reaktionsbedingungen in basischen Lösungen schon lange, etwa für einen der ältesten großchemischen Prozesse: die Seifenherstellung. Auch für die Biochemie und die organische Synthese sind basische Bedingungen wesentlich. Wie genau basische Lösungen auf atomistischer Ebene beschaffen sind, war jedoch bisher unklar. Basen (pH-Wert >7) zeichnen sich gegenüber neutralen Lösungen durch einen Überschuss von OH- Ionen aus. Sie sind die natürlichen Gegenspieler des H+ Ions, von dem Säuren (pH-Wert <7) einen Überschuss enthalten. In neutralen Lösungen wie Wasser herrscht ein Gleichgewicht zwischen beiden Ionen (pH-Wert = 7).

Ionen verschieben ihre Ladung über H-Brücken

Chemische Reaktionen laufen i.d.R. in saurem und basischem Milieu ganz unterschiedlich ab. Seit langer Zeit ist bekannt, dass wässrige basische Lösungen elektrischen Strom extrem gut leiten, d.h. die überzähligen Ladungsträger OH- müssen eine sehr große Mobilität in Wasser besitzen. Die Wissenschaft weiß, dass nicht die OH- Ionen selbst wandern, sondern dass nur ihre Ladungen entlang von Wasserstoffbrückenbindungen verschoben werden. Dabei gingen die Forscher bisher davon aus, dass sich das OH- Ion spiegelbildlich analog zu dem besser untersuchten H+ Ion verhält.

Nach den Berechnungen: Umdenken

In Säuren befindet sich das H+ Ion oft zwischen zwei Wassermolekülen, schematisch [H2O...H...OH2 ]+. Es kann jedoch fast ohne Energieaufwand verschoben werden, wodurch ein H3O+ Molekül entsteht, das seinerseits über Wasserstoffbrücken von drei Wassermolekülen umgegeben ist, schematisch H3O+(H2O)3. Die Ladung wandert dabei gleich über mehrere Bindungslängen. Noch im Jahr 2000 erschien eine Arbeit, der die Annahme zugrunde lag, OH- und damit Basen verhielten sich genauso. Die analogen zwei Komplexe seien also [HO...H...OH]- und OH-(H2O)3. Die Forschergruppe um Prof. Marx entwickelte ein Computerprogramm, das sowohl die Elektronen als auch die Atomkerne quantenmechanisch beschreibt. Sein Einsatz auf einem Großrechner machte die althergebrachte Vorstellung anderer Forscher zunichte.

Das Tunneln beschleunigt die Reaktion

Es zeigte sich, dass das OH- Ion in Wasser nicht wie bisher angenommen von drei, sondern von vier Wassermolekülen umgeben ist (siehe Teilabbildung a). Dieses Phänomen bezeichnen die Wissenschaftler als "Hyperkoordination". Damit ein H leicht verschoben werden kann, muss dieser Komplex zuerst ein Wassermolekül verlieren (siehe b und c), was ein relativ langsamer Schritt ist. Nach dieser "Aktivierung" kann ein [HO...H...OH]- Komplex entstehen (siehe d), welcher sich nun wieder in ein von vier Wassermolekülen umgebenes OH- Ion umwandelt (siehe e und f). Nach diesen Umlagerungen ist der OH- Defekt um eine Wasserstoffbrückenlänge gewandert (vgl. f mit a). Dieser Komplex existiert in Basen allerdings nur als sog. "Übergangskomplex" und ist damit nicht stabil wie im sauren Milieu. Die Forscher konnten schließlich zeigen, dass quantenmechanische Effekte, insbesondere das Tunneln eines Protons, die Umwandlung von OH-(H2O)3 merklich beschleunigen; dieser Effekt ist bei Säuren völlig vernachlässigbar. Ihr Fazit: das OH- Ion in Wasser verhält sich nicht wie das Spiegelbild von H+, womit die bisherigen Lehrbuch-Vorstellungen von wässrigen Basen über Bord zu werfen sind.

Titelaufnahme

M.E. Tuckerman; D. Marx; M. Parrinello: "The nature and transport mechanism of hydrated hydroxide ions in aqueous solution" In: Nature (London), 27. Juni 2002.

Weitere Informationen

Prof. Dr. Dominik Marx, Lehrstuhl für Theoretische Chemie, Fakultät für Chemie der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-28083, Fax: 0234/32-14045, E-Mail: dominik.marx@theochem.ruhr-uni-bochum.de,.

Dr. Josef König | idw
Weitere Informationen:
http://www.theochem.ruhr-uni-bochum.de/

Weitere Berichte zu: Basen Ion OH- Säure Wassermolekül

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stammzellen verlassen Blutgefäße in strömungsarmen Zonen des Knochenmarks
17.02.2017 | Max-Planck-Institut für molekulare Biomedizin, Münster

nachricht Der Entropie auf der Spur
17.02.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Im Focus: Weltweit genaueste und stabilste transportable optische Uhr

Optische Strontiumuhr der PTB in einem PKW-Anhänger – für geodätische Untersuchungen, weltweite Uhrenvergleiche und schließlich auch eine neue SI-Sekunde

Optische Uhren sind noch genauer als die Cäsium-Atomuhren, die gegenwärtig die Zeit „machen“. Außerdem benötigen sie nur ein Hundertstel der Messdauer, um eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

Ökologischer Landbau: Experten diskutieren Beitrag zum Grundwasserschutz

17.02.2017 | Veranstaltungen

Von DigiCash bis Bitcoin

16.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stammzellen verlassen Blutgefäße in strömungsarmen Zonen des Knochenmarks

17.02.2017 | Biowissenschaften Chemie

LODENFREY setzt auf das Workforce Mangement von GFOS

17.02.2017 | Unternehmensmeldung

50 Jahre JULABO : Erfahrung – Können & Weiterentwicklung!

17.02.2017 | Unternehmensmeldung