Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler der TU München stellen Spinnenseide synthetisch her

29.04.2008
Dem Biophysiker Sebastian Rammensee an der Technischen Universität München (TUM) ist es gelungen, den natürlichen Herstellungsprozess von Spinnenseide-Fäden im Labor nachzubauen.

Damit können erstmals die genauen physikalischen und chemischen Bedingungen erforscht werden, unter denen sich aus den Spinnenseide-Proteinen ein Faden bildet. Fäden aus Spinnenseide sind extremen mechanischen Belastungen gewachsen und zudem außerordentlich elastisch.

Die für die Herstellung künstlicher Biomaterialien grundlegende Arbeit, die im Rahmen der Exzellenz-Cluster "Nanosystems Initiative Munich" (NIM) und "Munich-Center for Integrated Protein Science" (CIPs) entstand, wurde jetzt in der renommierten amerikanischen Fachzeitschrift "Proceedings of the National Academy of Sciences" (PNAS) veröffentlicht.

Ein Spinnennetz ist besonders dehnfähig, aber auch extrem reißfest. Nur so kann es die Wucht von Insekten auffangen, die in vollem Flug aufprallen. Diese besonderen elastischen Eigenschaften verdankt das Netz den Fäden, aus denen es gesponnen wurde. Könnte man die Spinnenseide in industriellem Maßstab produzieren, wäre sie als Werkstoff für viele Anwendungen interessant.

... mehr zu:
»Biomaterial »Spinnenseide »TUM

So eignen sich Spinnenfäden zum Beispiel hervorragend zum Vernähen von Wunden, da die Fasern vom Immunsystem des Körpers nicht abgestoßen werden. Auch durchtrennte Nervenstränge lassen sich mit Spinnenseide reparieren, wobei das Material offenbar dazu beiträgt, dass die Nervenzellen wieder zusammenwachsen. Manche Wissenschaftler träumen auch schon von einem Ersatz der heute verwendeten Kunststoff-Fasern durch Spinnenseide, um vom immer teurer werdenden Öl unabhängig zu werden.

Eine industrielle Produktion von Spinnenseide-Fäden scheiterte bisher vor allem daran, dass der Kannibalismus der Tiere eine Spinnenzucht in großem Maßstab unmöglich macht. Die Fäden bestehen jeweils aus einer spezifischen Mischung unterschiedlicher Proteinbausteine, die in einem Kanal zusammengeführt werden. Spinnen stellen je nach Einsatzzweck verschiedene Arten von Seide her. Den entstehenden Faden zieht die Spinne mit ihren Beinen heraus und sorgt damit für die nötige Strömung in dem Kanal.

Damit die Proteine sich zu einem stabilen Faden verbinden, muss allerdings auch die Chemie stimmen. Denn die Eiweißketten sind zunächst gelöst und nehmen eine zufällige Struktur im Raum ein. Zellen der Spinndrüse fügen Kaliumphosphat und Säure zu, bis die so genannten Beta-Faltblattstrukturen entstehen. In diesen sind benachbarte Moleküle durch die gemeinsame Wechselwirkung vieler schwacher Bindungen sehr stark miteinander verbunden, was der Spinnenseide ihre große Stabilität verleiht.

Bisher konnte man den Spinnprozess nur schwer untersuchen, da die mikroskopisch kleinen Vorgänge nicht direkt in der Spinne beobachtbar sind. Gleichzeitig gab es bisher kaum die Möglichkeit an das Rohmaterial, die Proteinbausteine, in genügend großer Menge heran zu kommen. Dank der Arbeiten von Professor Thomas Scheibel, Lehrstuhl für Biomaterialien der Universität Bayreuth (bisher am Lehrstuhl für Biotechnologie der TUM), ist die Proteinherstellung im Labor mit Hilfe genetisch dafür programmierter Bakterien kein Problem mehr. So konnte Ute Slotta, Doktorandin am Lehrstuhl von Thomas Scheibel, im Rahmen des Kooperationsprojekts die benötigten Spinnenfaden-Proteine in ausreichender Menge herstellen.

Dem Doktoranden Sebastian Rammensee aus der Arbeitsgruppe von Professor Andreas Bausch an der TU München gelang es jetzt im Labor den Spinnkanal nachzubauen und damit die genauen chemischen und physikalischen Bedingungen, unter denen sich im Kanal ein stabiler Seidenfaden bildet, zu bestimmen. Das Herzstück des Experiments ist eine dünne Plexiglas-Platte mit winzigen Kanälen, jeder etwa 100 Mikrometer breit, kaum dicker als ein menschliches Haar. Durch die Kanäle fließen Lösungen mit den Protein-Bausteinen der Spinnenseide und den für den Herstellungsprozess zusätzlich erforderlichen Chemikalien. Dank dieser "Mikrofluidik" genannten Technik lassen sich Strömungs-Experimente mit sehr geringen Flüssigkeitsmengen auf kleinstem Raum durchführen und die Bedingungen nachempfinden, die im Spinnkanal herrschen.

Die Münchner Forscher haben für ihre Untersuchungen viele Varianten der Mischung von Seiden-Proteinen und des Strömungsverlaufs ausprobiert. Dabei untersuchten sie zwei Arten von Seiden-Proteinen, die auch bei natürlichen Spinnenfäden in einer Mischung auftreten: eADF3 und eADF4 (eADF steht hierbei für "engineered Araneus Diadematus Fibroin" - das Protein der Gartenspinne).

Das wichtigste Ergebnis des Experiments: Ein stabiler Faden entsteht nur, wenn die Proteinlösung genau dann destabilisiert wird, wenn ein so genannter Elongationsfluss herrscht: Durch eine Verengung im Kanal wird der Fluss beschleunigt. Diese Veränderung im Fluss sorgt dafür, dass die bis dahin kugelförmigen Spinnenseidenaggregate miteinander wechselwirken und zu einem Faden gezogen werden. Bemerkenswert ist, dass unbedingt eADF3-Proteine benötigt werden, um einen Faden entstehen zu lassen.

In einer Lösung, die ausschließlich eADF4-Proteine enthält, verbinden sich diese nicht zu einem stabilen Seidenfaden, sondern bleiben in Kugelform. Umgekehrt reichen eADF3-Proteine alleine aus, um die für stabile Fäden erforderliche Beta-Faltblattstruktur zu bilden. Die Messungen lassen aber darauf schließen, dass die eADF4-Beimischung für eine längere Lebensdauer der Fäden sorgt.

Professor Bausch kommentiert die Ergebnisse: "Wir haben hier versucht, die Natur so gut wie möglich nachzubauen und zu verstehen. Damit sind wir auf dem Weg zu künstlich hergestellten Biomaterialien einen entscheidenden Schritt weiter gekommen."

Die in der Online-Ausgabe der Zeitschrift "Proceedings of the National Academy of Sciences" vorab veröffentlichte Arbeit wurde durch die Exzellenz-Cluster "Nanosystems Initiative Munich" (NIM) und "Munich-Center for Integrated Protein Science" (CIPs) gefördert.

Kontakt:
Prof. Andreas Bausch
Physik-Department E22
Technische Universität München
Tel.: 089 289-12480
E-Mail: abausch@ph.tum.de
Dr. Peter Sonntag
Nanosystems Initiative Munich
Tel.: 089 2180 5091
E-Mail: peter.sonntag@lmu.de
www.nano-initiative-munich.de
Die Technische Universität München (TUM) ist mit rund 420 Professorinnen und Professoren, 6.500 Mitarbeiterinnen und Mitarbeitern (einschließlich Klinikum rechts der Isar) und 22.000 Studierenden eine der führenden Universitäten Deutschlands. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. Das weltweite Netzwerk der TUM umfasst auch eine Dependance in Singapur. Die TUM ist dem Leitbild einer unternehmerischen Universität verpflichtet.

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.tu-muenchen.de
http://portal.mytum.de/pressestelle/pressemitteilungen/news-800
http://portal.mytum.de/pressestelle/faszination-forschung/2007nr1/03

Weitere Berichte zu: Biomaterial Spinnenseide TUM

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das Rezept für ein motorisches Neuron
09.12.2016 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht "Wächter des Genoms": Forscher aus Halle liefern neue Einblicke in die Struktur des Proteins p53
09.12.2016 | Martin-Luther-Universität Halle-Wittenberg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops