Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler der TU München stellen Spinnenseide synthetisch her

29.04.2008
Dem Biophysiker Sebastian Rammensee an der Technischen Universität München (TUM) ist es gelungen, den natürlichen Herstellungsprozess von Spinnenseide-Fäden im Labor nachzubauen.

Damit können erstmals die genauen physikalischen und chemischen Bedingungen erforscht werden, unter denen sich aus den Spinnenseide-Proteinen ein Faden bildet. Fäden aus Spinnenseide sind extremen mechanischen Belastungen gewachsen und zudem außerordentlich elastisch.

Die für die Herstellung künstlicher Biomaterialien grundlegende Arbeit, die im Rahmen der Exzellenz-Cluster "Nanosystems Initiative Munich" (NIM) und "Munich-Center for Integrated Protein Science" (CIPs) entstand, wurde jetzt in der renommierten amerikanischen Fachzeitschrift "Proceedings of the National Academy of Sciences" (PNAS) veröffentlicht.

Ein Spinnennetz ist besonders dehnfähig, aber auch extrem reißfest. Nur so kann es die Wucht von Insekten auffangen, die in vollem Flug aufprallen. Diese besonderen elastischen Eigenschaften verdankt das Netz den Fäden, aus denen es gesponnen wurde. Könnte man die Spinnenseide in industriellem Maßstab produzieren, wäre sie als Werkstoff für viele Anwendungen interessant.

... mehr zu:
»Biomaterial »Spinnenseide »TUM

So eignen sich Spinnenfäden zum Beispiel hervorragend zum Vernähen von Wunden, da die Fasern vom Immunsystem des Körpers nicht abgestoßen werden. Auch durchtrennte Nervenstränge lassen sich mit Spinnenseide reparieren, wobei das Material offenbar dazu beiträgt, dass die Nervenzellen wieder zusammenwachsen. Manche Wissenschaftler träumen auch schon von einem Ersatz der heute verwendeten Kunststoff-Fasern durch Spinnenseide, um vom immer teurer werdenden Öl unabhängig zu werden.

Eine industrielle Produktion von Spinnenseide-Fäden scheiterte bisher vor allem daran, dass der Kannibalismus der Tiere eine Spinnenzucht in großem Maßstab unmöglich macht. Die Fäden bestehen jeweils aus einer spezifischen Mischung unterschiedlicher Proteinbausteine, die in einem Kanal zusammengeführt werden. Spinnen stellen je nach Einsatzzweck verschiedene Arten von Seide her. Den entstehenden Faden zieht die Spinne mit ihren Beinen heraus und sorgt damit für die nötige Strömung in dem Kanal.

Damit die Proteine sich zu einem stabilen Faden verbinden, muss allerdings auch die Chemie stimmen. Denn die Eiweißketten sind zunächst gelöst und nehmen eine zufällige Struktur im Raum ein. Zellen der Spinndrüse fügen Kaliumphosphat und Säure zu, bis die so genannten Beta-Faltblattstrukturen entstehen. In diesen sind benachbarte Moleküle durch die gemeinsame Wechselwirkung vieler schwacher Bindungen sehr stark miteinander verbunden, was der Spinnenseide ihre große Stabilität verleiht.

Bisher konnte man den Spinnprozess nur schwer untersuchen, da die mikroskopisch kleinen Vorgänge nicht direkt in der Spinne beobachtbar sind. Gleichzeitig gab es bisher kaum die Möglichkeit an das Rohmaterial, die Proteinbausteine, in genügend großer Menge heran zu kommen. Dank der Arbeiten von Professor Thomas Scheibel, Lehrstuhl für Biomaterialien der Universität Bayreuth (bisher am Lehrstuhl für Biotechnologie der TUM), ist die Proteinherstellung im Labor mit Hilfe genetisch dafür programmierter Bakterien kein Problem mehr. So konnte Ute Slotta, Doktorandin am Lehrstuhl von Thomas Scheibel, im Rahmen des Kooperationsprojekts die benötigten Spinnenfaden-Proteine in ausreichender Menge herstellen.

Dem Doktoranden Sebastian Rammensee aus der Arbeitsgruppe von Professor Andreas Bausch an der TU München gelang es jetzt im Labor den Spinnkanal nachzubauen und damit die genauen chemischen und physikalischen Bedingungen, unter denen sich im Kanal ein stabiler Seidenfaden bildet, zu bestimmen. Das Herzstück des Experiments ist eine dünne Plexiglas-Platte mit winzigen Kanälen, jeder etwa 100 Mikrometer breit, kaum dicker als ein menschliches Haar. Durch die Kanäle fließen Lösungen mit den Protein-Bausteinen der Spinnenseide und den für den Herstellungsprozess zusätzlich erforderlichen Chemikalien. Dank dieser "Mikrofluidik" genannten Technik lassen sich Strömungs-Experimente mit sehr geringen Flüssigkeitsmengen auf kleinstem Raum durchführen und die Bedingungen nachempfinden, die im Spinnkanal herrschen.

Die Münchner Forscher haben für ihre Untersuchungen viele Varianten der Mischung von Seiden-Proteinen und des Strömungsverlaufs ausprobiert. Dabei untersuchten sie zwei Arten von Seiden-Proteinen, die auch bei natürlichen Spinnenfäden in einer Mischung auftreten: eADF3 und eADF4 (eADF steht hierbei für "engineered Araneus Diadematus Fibroin" - das Protein der Gartenspinne).

Das wichtigste Ergebnis des Experiments: Ein stabiler Faden entsteht nur, wenn die Proteinlösung genau dann destabilisiert wird, wenn ein so genannter Elongationsfluss herrscht: Durch eine Verengung im Kanal wird der Fluss beschleunigt. Diese Veränderung im Fluss sorgt dafür, dass die bis dahin kugelförmigen Spinnenseidenaggregate miteinander wechselwirken und zu einem Faden gezogen werden. Bemerkenswert ist, dass unbedingt eADF3-Proteine benötigt werden, um einen Faden entstehen zu lassen.

In einer Lösung, die ausschließlich eADF4-Proteine enthält, verbinden sich diese nicht zu einem stabilen Seidenfaden, sondern bleiben in Kugelform. Umgekehrt reichen eADF3-Proteine alleine aus, um die für stabile Fäden erforderliche Beta-Faltblattstruktur zu bilden. Die Messungen lassen aber darauf schließen, dass die eADF4-Beimischung für eine längere Lebensdauer der Fäden sorgt.

Professor Bausch kommentiert die Ergebnisse: "Wir haben hier versucht, die Natur so gut wie möglich nachzubauen und zu verstehen. Damit sind wir auf dem Weg zu künstlich hergestellten Biomaterialien einen entscheidenden Schritt weiter gekommen."

Die in der Online-Ausgabe der Zeitschrift "Proceedings of the National Academy of Sciences" vorab veröffentlichte Arbeit wurde durch die Exzellenz-Cluster "Nanosystems Initiative Munich" (NIM) und "Munich-Center for Integrated Protein Science" (CIPs) gefördert.

Kontakt:
Prof. Andreas Bausch
Physik-Department E22
Technische Universität München
Tel.: 089 289-12480
E-Mail: abausch@ph.tum.de
Dr. Peter Sonntag
Nanosystems Initiative Munich
Tel.: 089 2180 5091
E-Mail: peter.sonntag@lmu.de
www.nano-initiative-munich.de
Die Technische Universität München (TUM) ist mit rund 420 Professorinnen und Professoren, 6.500 Mitarbeiterinnen und Mitarbeitern (einschließlich Klinikum rechts der Isar) und 22.000 Studierenden eine der führenden Universitäten Deutschlands. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. Das weltweite Netzwerk der TUM umfasst auch eine Dependance in Singapur. Die TUM ist dem Leitbild einer unternehmerischen Universität verpflichtet.

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.tu-muenchen.de
http://portal.mytum.de/pressestelle/pressemitteilungen/news-800
http://portal.mytum.de/pressestelle/faszination-forschung/2007nr1/03

Weitere Berichte zu: Biomaterial Spinnenseide TUM

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein Holodeck für Fliegen, Fische und Mäuse
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Wie Pflanzen ihr Gedächtnis vererben
21.08.2017 | Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik