Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Menschliches Blutgefäßsystem in der Maus

14.04.2008
Forscher des Deutschen Krebsforschungszentrums untersuchen an der Maus, wie Tumoren die menschliche Blutversorgung manipulieren

Um zu überleben, nutzen Tumoren die Blutversorgung des Körpers für ihre Zwecke: Sie regen das Wachstum von Blutgefäßen an, die den Tumor versorgen. Mediziner blockieren diesen Prozess, um so Tumoren zurückzudrängen. Wissenschaftler des gemeinsamen Forschungsbereichs Vaskuläre Biologie der Medizinischen Fakultät Mannheim der Universität Heidelberg und des Deutschen Krebsforschungszentrums (DKFZ) haben gemeinsam mit Freiburger Kollegen ein Verfahren entwickelt, mit dem sich ein komplexes menschliches Blutgefäßsystem in der Maus erzeugen lässt.

Damit können sie den Einfluss von Tumoren auf das intakte menschliche Blutgefäßsystem untersuchen und Wirkstoffe für die Therapie testen.

Die Neubildung von Blutgefäßen, die Angiogenese, ist eine Achillesferse des Tumorwachstums. Denn ohne die Versorgung mit Sauerstoff und Nährstoffen sind Tumoren nicht lebensfähig. Seit einigen Jahren werden deshalb Stoffe, die diesen Prozess unterdrücken, sogenannte Angiogenese-Hemmer, in der Krebstherapie verwendet. Um dieses noch junge Forschungsgebiet voranzutreiben, hat ein Forscherteam um Professor Hellmut Augustin ein Verfahren entwickelt, mit dem sich ein komplexes menschliches Blutgefäßsystem in der Maus erzeugen lässt, das auch nach mehreren Monaten noch funktionsfähig ist.

Das Verfahren basiert auf der Beobachtung, dass sich isolierte Gefäßwandzellen, sogenannte Endothelzellen, in der Zellkultur spontan zu Aggregaten, Sphäroiden, zusammenlagern. "Einzelne, in Suspension schwimmende Gefäßwandzellen sind dazu verdammt zu sterben - der Zusammenschluss in den Sphäroiden stabilisiert sie", sagt Hellmut Augustin. Den Wissenschaftlern Abdullah Alajati und Anna Laib ist es gelungen, die Sphäroide, eingebettet in eine Gelmatrix, unter die Haut von Mäusen zu spritzen und mittels Wachstumsfaktoren die Bildung eines Netzwerks menschlicher Blutgefäße anzuregen. Das Immunsystem der Mäuse war unterdrückt und daher unfähig, die körperfremden Zellen abzustoßen. "Die neu gebildeten Blutgefäße bestehen ausschließlich aus menschlichen Gefäßwandzellen", erklärt die junge DKFZ-Forscherin Anna Laib. "An den Rändern der Matrix nehmen die menschlichen Gefäßwandzellen Kontakt zu denen der Maus auf. So wird das transplantierte menschliche Gefäßsystem an die Blutzirkulation der Maus angeschlossen."

Das Verfahren bietet experimentellen Freiraum und kann Antworten auf verschiedene Fragen der gefäßbiologischen Forschung liefern: Die Wissenschaftler können die Gefäßwandzellen vor der Transplantation genetisch manipulieren, um die Bildung der Gefäßnetze zu untersuchen. Außerdem ist es möglich, die Wirkung pharmakologischer Substanzen zu prüfen - die an der Studie beteiligte Freiburger ProQinase GmbH führt solche Versuche bereits durch. "Selbst für die Herstellung künstlicher Gewebe ist die Methode interessant", sagt Hellmut Augustin, "denn beim Einsatz künstlicher Ersatzgewebe ist es bisher schwierig gewesen, ein funktionierendes Blutgefäßsystem herzustellen, das die Gewebekonstrukte ausreichend versorgt."

Abdullah Alajati, Anna M Laib, Holger Weber, Anja M Boos, Arne Bartol, Kristian Ikenberg, Thomas Korff, Hanswalter Zentgraf, Cynthia Obodozie, RalphGraeser, Sven Christian, Günter Finkenzeller, G Björn Stark, Mélanie Héroult & Hellmut G Augustin: Spheroid-based engineering of a human vascula¬ture in mice. Nature Methods, April 2008, DOI: 10.1038/nmeth.1198

Das Deutsche Krebsforschungszentrum hat die Aufgabe, die Mechanismen der Krebsentstehung systematisch zu untersuchen und Krebsrisikofaktoren zu erfassen. Die Ergebnisse dieser Grundlagenforschung sollen zu neuen Ansätzen in Vorbeugung, Diagnose und Therapie von Krebserkrankungen führen. Das Zentrum wird zu 90 Prozent vom Bundesministerium für Bil¬dung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V.

Dr. Stefanie Seltmann
Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
D-69120 Heidelberg
T: +49 6221 42 2854
F: +49 6221 42 2968

Dr. Stefanie Seltmann | idw
Weitere Informationen:
http://www.dkfz.de
http://www.dkfz.de/pressemitteilungen

Weitere Berichte zu: Blutgefäß Blutgefäßsystem Gefäßwandzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie