Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn die Umwelt Druck macht - Natürliche Selektion schafft neue Gene

10.04.2008
Neue Gene entstehen durch eine Reihe molekularer Mechanismen, unter anderem durch Genduplikation. Dabei wird ein bereits bestehendes Gen verdoppelt, so dass es nun in einer weiteren Kopie vorliegt.

Weil das neue Gen für den Erhalt und die Funktion des Organismus nicht nötig ist, wirken sich Veränderungen darin oft nicht unmittelbar aus. Das neue Gen verändert sich in der Regel deshalb schneller als die ursprünglich identische Vorlage, bis sich die Duplikate grundlegend unterscheiden - und auch verschiedene Funktionen vermitteln.

Die beiden Evolutionsbiologen Professor Wolfgang Stephan und Dr. Steffen Beisswanger der Ludwig-Maximilians-Universität (LMU) München konnten nun zeigen, dass ein sehr wichtiger Mechanismus der Evolution eine unerwartet große Rolle bei dieser funktionellen Differenzierung spielt. Wie in der aktuellen Ausgabe der Fachzeitschrift "Proceedings of the National Academy of Sciences USA (PNAS)" berichtet, ist damit zum ersten Mal die Bedeutung der natürlichen Selektion in diesem Zusammenhang nachgewiesen. Darunter versteht man den Druck, den die Umwelt auf Individuen ausübt, und der über deren genetische Anpassungsfähigkeit - und letztlich den Fortpflanzungserfolg - vermittelt wird.

Umso überraschender war, dass das in der vorliegenden Studie untersuchte Gen zwar von dem neu gefundenen Mechanismus betroffen ist, aber wohl keinen direkten Umweltbezug hat.

... mehr zu:
»Evolution »Gen »Genkonversion »Selektion

"Im Laufe der Evolution haben sich zunehmend komplexere Lebensformen entwickelt", berichtet Stephan. "Dies war nur möglich, weil auch Gene mit neuen Funktionen entstanden sind. Und eine der zentralen Aufgaben für uns Evolutionsgenetiker besteht darin, diesen Prozess der funktionellen Differenzierung zu erklären." Nach der herrschenden Lehrmeinung entstehen neue Gene in der Regel durch die Duplikation eines bereits vorhandenen Gens, wobei sich die beiden Kopien dann zunehmend in Bezug auf ihren Aufbau und die Funktion voneinander entfernen.

Dies kann dazu führen, dass eines der beiden Gene die ursprüngliche, das andere aber eine neue Funktion annimmt. Wie dies genau vonstatten geht, war bislang allerdings weitgehend unklar. Die Evolution von duplizierten Genen ist nämlich dank der so genannten Genkonversion gekoppelt.

Dabei werden Sequenzinformationen im genetischen Material ausgetauscht, in diesem Fall zwischen den beiden Duplikaten. Dadurch aber können beispielsweise die Mutationen eines der beiden Gene auf das andere übertragen werden - die Identität der Kopien bleibt so also tendenziell erhalten.

"Deshalb stellt sich die Frage, wie schnell sich die Duplikate auseinanderentwickeln müssen, um dem Prozess der Genkonversion zu entgehen", sagt Beisswanger. "Wir wollten zudem wissen, welcher Mechanismus dieses Entkommen ermöglicht. Letztlich haben unsere Ergebnisse dann gezeigt, dass positive natürliche Selektion den Prozess der funktionellen Differenzierung zweier Genkopien ermöglicht, wenn sie sehr stark ist - und wenn gleichzeitig die Genkonversion zwischen den Duplikaten unterdrückt wird.

Stephan und Beisswanger untersuchten in der vorliegenden Arbeit zwei benachbarte Gene der Taufliege Drosophila melanogaster, die durch Duplikation entstanden waren: ph-d (distal) und ph-p (proximal), die zusammen den Genort oder Locus ph (für "polyhomeotic") bilden. "Die Duplizierung von ph ist vor mindestens 25 bis 30 Millionen Jahren erfolgt", berichtet Stephan. "Trotzdem sind sich die beiden Kopien strukturell und funktionell noch sehr ähnlich, was wohl auf Genkonversion zurückzuführen ist." Dennoch zeigen sich Unterschiede in der Regulation der beiden Gene - was ein erstes funktionelles Auseinanderdriften anzeigt.

Die beiden Evolutionsbiologen analysierten deshalb die Sequenz der Duplikate auf der Suche nach eindeutigen Anzeichen für einen starken positiven Selektionsdruck. Ein Beispiel für einen derartigen - meist kurzlebigen und damit schwer nachweisbaren - "selective sweep" ist eine Veränderung im Genom mit positiven Auswirkungen, die erst vor kurzem fixiert wurde. Typisch für einen "selective sweep" ist unter anderem eine geringe Variation an der betreffenden Stelle im Genom.

Tatsächlich fanden die Wissenschaftler entsprechende Merkmale im Bereich des ph-Genorts. Es ließ sich sogar noch weiter eingrenzen, wo genau der Selektionsdruck vermutlich am stärksten wirkt: Dieser Bereich ist im Gen ph-p. "Die Frage ist nun, wie es zur Neofunktionalisierung kommen kann, obwohl die Genkonversion in diesem Bereich im Laufe der Evolution auch gewirkt hat," so Stephan. "Wir vermuten, dass dieser Mechanismus im betroffenen Bereich inaktiviert wurde, weil zu schnell zu viele Veränderungen aufgetreten sind, bis eine Genkonversion dann unmöglich wurde."

Bisher wurde die natürliche Selektion als Helfer der Neofunktionalisierung wegen des Gegenspielers Genkonversion nur theoretisch für möglich gehalten. "Unser Resultat ist aber auch aus einem anderen Grund überraschend", ergänzt Beisswanger. "Natürliche Selektion bedeutet schließlich, dass Individuen, die mehr Nachkommen als ihre Artgenossen produzieren, ihre Genvarianten erfolgreich weitergeben.

Diese Fitness wird vor allem über die individuelle Fähigkeit zur Anpassung an die Umwelt vermittelt. Entsprechend hatten wir erwartet, die selective sweeps vor allem bei Genen zu finden, die an der Anpassung der Organismen direkt beteiligt sind. Das können etwa Gene sein, die Umweltgifte entschärfen oder die Sinneswahrnehmung beeinflussen. Das von uns untersuchte Gen hat aber wahrscheinlich keinen direkten Umweltbezug, sondern reguliert die Aktivität von hunderten anderer Gene. Möglicherweise also spielt die natürliche Selektion bei der Neofunktionalisierung sogar eine noch größere Rolle als vermutet." (suwe)

Publikation:
"Evidence that strong positive selection drives neofunctionalization in the tandemly duplicated polyhomeotic genes in Drosophila",
Steffen Beisswanger und Wolfgang Stephan,
PNAS, Bd. 105, S. 5447-52, 8. April 2008
Ansprechpartner:
Professor Dr. Wolfgang Stephan
Biozentrum der LMU
Tel.: 089 / 2180 - 74102
Fax: 089 / 2180 - 74104
E-Mail: stephan@zi.biologie.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de
http://www.zi.biologie.uni-muenchen.de/evol

Weitere Berichte zu: Evolution Gen Genkonversion Selektion

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebsdiagnostik: Pinkeln statt Piksen?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Kugelmühlen statt Lösungsmittel: Nanographene mit Mechanochemie
25.05.2018 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics