Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn die Umwelt Druck macht - Natürliche Selektion schafft neue Gene

10.04.2008
Neue Gene entstehen durch eine Reihe molekularer Mechanismen, unter anderem durch Genduplikation. Dabei wird ein bereits bestehendes Gen verdoppelt, so dass es nun in einer weiteren Kopie vorliegt.

Weil das neue Gen für den Erhalt und die Funktion des Organismus nicht nötig ist, wirken sich Veränderungen darin oft nicht unmittelbar aus. Das neue Gen verändert sich in der Regel deshalb schneller als die ursprünglich identische Vorlage, bis sich die Duplikate grundlegend unterscheiden - und auch verschiedene Funktionen vermitteln.

Die beiden Evolutionsbiologen Professor Wolfgang Stephan und Dr. Steffen Beisswanger der Ludwig-Maximilians-Universität (LMU) München konnten nun zeigen, dass ein sehr wichtiger Mechanismus der Evolution eine unerwartet große Rolle bei dieser funktionellen Differenzierung spielt. Wie in der aktuellen Ausgabe der Fachzeitschrift "Proceedings of the National Academy of Sciences USA (PNAS)" berichtet, ist damit zum ersten Mal die Bedeutung der natürlichen Selektion in diesem Zusammenhang nachgewiesen. Darunter versteht man den Druck, den die Umwelt auf Individuen ausübt, und der über deren genetische Anpassungsfähigkeit - und letztlich den Fortpflanzungserfolg - vermittelt wird.

Umso überraschender war, dass das in der vorliegenden Studie untersuchte Gen zwar von dem neu gefundenen Mechanismus betroffen ist, aber wohl keinen direkten Umweltbezug hat.

... mehr zu:
»Evolution »Gen »Genkonversion »Selektion

"Im Laufe der Evolution haben sich zunehmend komplexere Lebensformen entwickelt", berichtet Stephan. "Dies war nur möglich, weil auch Gene mit neuen Funktionen entstanden sind. Und eine der zentralen Aufgaben für uns Evolutionsgenetiker besteht darin, diesen Prozess der funktionellen Differenzierung zu erklären." Nach der herrschenden Lehrmeinung entstehen neue Gene in der Regel durch die Duplikation eines bereits vorhandenen Gens, wobei sich die beiden Kopien dann zunehmend in Bezug auf ihren Aufbau und die Funktion voneinander entfernen.

Dies kann dazu führen, dass eines der beiden Gene die ursprüngliche, das andere aber eine neue Funktion annimmt. Wie dies genau vonstatten geht, war bislang allerdings weitgehend unklar. Die Evolution von duplizierten Genen ist nämlich dank der so genannten Genkonversion gekoppelt.

Dabei werden Sequenzinformationen im genetischen Material ausgetauscht, in diesem Fall zwischen den beiden Duplikaten. Dadurch aber können beispielsweise die Mutationen eines der beiden Gene auf das andere übertragen werden - die Identität der Kopien bleibt so also tendenziell erhalten.

"Deshalb stellt sich die Frage, wie schnell sich die Duplikate auseinanderentwickeln müssen, um dem Prozess der Genkonversion zu entgehen", sagt Beisswanger. "Wir wollten zudem wissen, welcher Mechanismus dieses Entkommen ermöglicht. Letztlich haben unsere Ergebnisse dann gezeigt, dass positive natürliche Selektion den Prozess der funktionellen Differenzierung zweier Genkopien ermöglicht, wenn sie sehr stark ist - und wenn gleichzeitig die Genkonversion zwischen den Duplikaten unterdrückt wird.

Stephan und Beisswanger untersuchten in der vorliegenden Arbeit zwei benachbarte Gene der Taufliege Drosophila melanogaster, die durch Duplikation entstanden waren: ph-d (distal) und ph-p (proximal), die zusammen den Genort oder Locus ph (für "polyhomeotic") bilden. "Die Duplizierung von ph ist vor mindestens 25 bis 30 Millionen Jahren erfolgt", berichtet Stephan. "Trotzdem sind sich die beiden Kopien strukturell und funktionell noch sehr ähnlich, was wohl auf Genkonversion zurückzuführen ist." Dennoch zeigen sich Unterschiede in der Regulation der beiden Gene - was ein erstes funktionelles Auseinanderdriften anzeigt.

Die beiden Evolutionsbiologen analysierten deshalb die Sequenz der Duplikate auf der Suche nach eindeutigen Anzeichen für einen starken positiven Selektionsdruck. Ein Beispiel für einen derartigen - meist kurzlebigen und damit schwer nachweisbaren - "selective sweep" ist eine Veränderung im Genom mit positiven Auswirkungen, die erst vor kurzem fixiert wurde. Typisch für einen "selective sweep" ist unter anderem eine geringe Variation an der betreffenden Stelle im Genom.

Tatsächlich fanden die Wissenschaftler entsprechende Merkmale im Bereich des ph-Genorts. Es ließ sich sogar noch weiter eingrenzen, wo genau der Selektionsdruck vermutlich am stärksten wirkt: Dieser Bereich ist im Gen ph-p. "Die Frage ist nun, wie es zur Neofunktionalisierung kommen kann, obwohl die Genkonversion in diesem Bereich im Laufe der Evolution auch gewirkt hat," so Stephan. "Wir vermuten, dass dieser Mechanismus im betroffenen Bereich inaktiviert wurde, weil zu schnell zu viele Veränderungen aufgetreten sind, bis eine Genkonversion dann unmöglich wurde."

Bisher wurde die natürliche Selektion als Helfer der Neofunktionalisierung wegen des Gegenspielers Genkonversion nur theoretisch für möglich gehalten. "Unser Resultat ist aber auch aus einem anderen Grund überraschend", ergänzt Beisswanger. "Natürliche Selektion bedeutet schließlich, dass Individuen, die mehr Nachkommen als ihre Artgenossen produzieren, ihre Genvarianten erfolgreich weitergeben.

Diese Fitness wird vor allem über die individuelle Fähigkeit zur Anpassung an die Umwelt vermittelt. Entsprechend hatten wir erwartet, die selective sweeps vor allem bei Genen zu finden, die an der Anpassung der Organismen direkt beteiligt sind. Das können etwa Gene sein, die Umweltgifte entschärfen oder die Sinneswahrnehmung beeinflussen. Das von uns untersuchte Gen hat aber wahrscheinlich keinen direkten Umweltbezug, sondern reguliert die Aktivität von hunderten anderer Gene. Möglicherweise also spielt die natürliche Selektion bei der Neofunktionalisierung sogar eine noch größere Rolle als vermutet." (suwe)

Publikation:
"Evidence that strong positive selection drives neofunctionalization in the tandemly duplicated polyhomeotic genes in Drosophila",
Steffen Beisswanger und Wolfgang Stephan,
PNAS, Bd. 105, S. 5447-52, 8. April 2008
Ansprechpartner:
Professor Dr. Wolfgang Stephan
Biozentrum der LMU
Tel.: 089 / 2180 - 74102
Fax: 089 / 2180 - 74104
E-Mail: stephan@zi.biologie.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de
http://www.zi.biologie.uni-muenchen.de/evol

Weitere Berichte zu: Evolution Gen Genkonversion Selektion

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie