Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Amöbe hilft Evolutionsrätsel um Photosynthese lösen

28.03.2008
Genomsequenz von Paulinella chromotophora liefert grundlegende Hinweise zum genetischen Verständnis von Endosymbiose-Beziehungen. Wissenschaftler des Fritz-Lipmann-Instituts in Jena und der Uni Köln kommen so der evolutionären Entwicklung des pflanzlichen Photosynthese-Apparates auf die Spur: das Chromatophor als entwicklungsgeschichtlicher Zwischenschritt zum Chloroplasten.

Die Photosynthese ist einer der wichtigsten biochemischen Prozesse, der im Laufe der Evolution auf unserem Planeten hervorgebracht wurde. Dabei wird Sonnenlicht in chemische Energie umgewandelt.

Verantwortlich hierfür sind in höher entwickelten Pflanzenzellen die mit Farbpigmenten ausgestatteten Chloroplasten. Diese Zellorganellen sind einst aus unabhängigen Photosynthese treibenden prokaryontischen Organismen (Cyanobakterien) hervorgegangen, die von eukaryontischen Zellen `verschluckt´ und integriert wurden. Endosymbiose nennt sich dieser zelluläre Einverleibungsprozess, bei dem Wirtszelle und integrierter Organismus in wechselseitige Abhängigkeit geraten. Wie dieser Prozess entwicklungsgeschichtlich verlaufen ist, ist im Detail noch ungeklärt.

"Wenn wir verstehen, wie die genetische Integration zwischen Wirtszelle und dem einst einverleibtem Organismus verläuft, sind wir einen großen Schritt weiter", so Dr. Gernot Glöckner vom Leibniz-Institut für Altersforschung - Fritz-Lipmann-Institut in Jena. Bekannt ist bislang, dass dabei nicht-benötigte Gene der Zellorganelle verloren gehen und andere an die Wirtszelle weitergegeben werden. Aufschlussreiche neue Erkenntnisse liefert nun die so genannte Thecamöbe Paulinella chromatophora, eine genetisch äußerst komplexe Schalenamöbe. "Was dieses anpassungsfähige Wechseltierchen für uns so interessant macht, ist seine Fähigkeit, Photosynthese zu betreiben", betont Glöckner. Dieses einzellige, von Lauterborn bereits 1885 beschriebene Lebewesen nutzt hierfür bestimmte farbpigmenthaltige, wurstförmige Zellstrukturen, die Chromatophoren. Wie die Photosynthese-treibenden Zellen, von denen die Pflanzen abstammen, ist Paulinella das Produkt einer endosymbiotischen Beziehung zwischen einer eukaryontischen Wirtzelle und einer vormalig unabhängigenen Prokaryonten-Zelle (ebenfalls ein Cyanobakterium). Zellorganelle und Wirt sind mit der Zeit allerdings in wechselseitige Abhängigkeit geraten und können nun unabhängig voneinander nicht mehr existieren.

"Um den entwicklungsgeschichtlichen Parallelen zwischen beiden Photo-Energie-Systemen auf den Grund zu gehen, haben wir die Genomsequenz der Chromatophoren von Paulinella analysiert und mit dem Genom von Chloroplasten sowie frei lebenden Cyanobakterien verglichen", erklärt Dr. Glöckner den Grundansatz des aktuell in Current Biology veröffentlichten Forschungsprojektes. "Wir unterhalten hierfür eine äußerst fruchtbare Forschungskooperation mit Prof. Dr. Michael Melkonian und Eva Nowack vom botanischen Institut der Uni Köln", so der Jenaer Wissenschaftler. So wurden die Amöben in Köln kultiviert. Dann wurde das genetische Material der Chromatophoren isoliert und in Jena mit einem Hochdurchsatz-Sequenzer der neuesten Generation (454 FLX) durchsequenziert. Analysiert wurden die Ergebnisse gemeinsam.

Der Befund: "Das Genom der untersuchten Chromatophoren hat eine Kodierungskapazität von 1 Mb (Megabase) und übersteigt die des Chloroplastengenoms um das 5fache", so der Mitarbeiter aus der Forschergruppe um Dr. Matthias Platzer. Im Vergleich mit seinen freilebenden Verwandten, einem cyanobakteriellem Vorfahr, ist das Genom allerdings stark reduziert. "Das heißt, über 2 Drittel der Gene gingen verloren", erläutert Glöckner.

Behalten haben die Chromatophoren aber die Fähigkeit, autonom Photosynthese zu betreiben. Nicht so die Chloroplasten: bei ihnen ist ein Teil der Photosynthese-Gene in den Kern der Wirtszelle verlegt wurde. Codiert sind im Chromatophoren-Genom auch Synthesewege für Aminosäuren und Vitamine. "Wir gehen davon aus, dass diese Stoffe neben der Photosyntheseleistung von der Wirtszelle zum Überleben benötigt werden", sagt der Genomforscher. Glöckner weiter: "Der Wirt ist also in mehrfacher Weise von diesem Photosynthese-Organell abhängig". Umgekehrt fehlt den Chromatophoren die genetische Information zur Steuerung des Zitratzyklus, eines zentralen Teils des Zuckerstoffwechsels, sowie weiterer elementarer Stoffwechselwege.

Die Wissenschaftler vermuten, dass die Chromatophoren eine entwicklungsgeschichtliche Zwischenstufe darstellen hin zu den Chloroplasten, wie sie in den heutigen höheren Pflanzen vorkommen: "Wir verstehen die Entwicklung solcher Zellorganellen als zweistufigen Prozess. Im ersten Schritt geraten Wirt und Endosymbiont durch den Austausch von Stoffen mehr und mehr in Abhängigkeit (Chromatophoren). Im Zuge des zweiten Schrittes verlagern sich Gene des einverleibten Organismus in den Zellkern der Wirtszelle, der damit die totale regulatorische Hoheit über das Organell übernimmt (Chloroplasten)."

"Die Sequenzierung des Organellgenoms von Paulinella Chromotophora hat uns gezeigt, welche Funktionen im Zellstoffwechsel im Verlauf der genetischen Integration aufgegeben bzw. beibehalten wurden", so Glöckner. Um ein umfassendes Bild der genetischen Integrationsprozesse bei der Endosymbiose zu erhalten, müsste aber auch das Genom der Wirtszelle durchsequenziert werden. "Theoretisch ist das kein Problem", meint der Amöbenforscher. Praktisch aber erweise sich ein solches Projekt als äußerst aufwändig und kostspielig. "Denn in puncto genetischer Ausstattung steht die Amöbe uns Menschen - leider - in nichts nach", bedauert Dr. Gernot Glöckner. "Wir bräuchten dafür vom Ausmaß her ein zweites humanes Genomprojekt - aber dieses Mal für Amöben!".

Kontakt:
PD Dr. Gernot Glöckner, Fritz-Lipmann-Institut Jena; E-mail: gernot@fli-leibniz.de;
Tel.: 0 36 41 / 65 64 40, fax: 0 36 41 / 65 62 54;
Prof. Dr. Michael Melkonian, Uni Köln; E-mail: michael.melkonian@uni-koeln.de;
Tel.: 02 21 / 470 24 75, fax: 02 21 / 470 51 81;
Publikation:
Nowack ECM, Melkonian M, Glöckner G: Chromatophore Genome Sequence of Paulinella Sheds Light on Acquisition of Photosynthesis by Eukaryotes. Current Biology 2008, 18(6):410-419

Dr. Eberhard Fritz | idw
Weitere Informationen:
http://www.fli-leibniz.de

Weitere Berichte zu: Amöbe Chloroplasten Chromatophor Genom Organismus Photosynthese Wirtszelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein Holodeck für Fliegen, Fische und Mäuse
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Wie Pflanzen ihr Gedächtnis vererben
21.08.2017 | Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik