Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Isolierschicht für molekulare Drähte

07.06.2002


Bausteine für die Nanotechnologie nach dem Vorbild der Natur



Wie eine Bohnenpflanze sich beim Wachsen um die Kletterstange windet, legen sich biegsame Ketten aus reaktionsträgen chemischen Verbindungen spiralförmig um eine starre Kohlenstoff-Brücke, die zwei Metallzentren verbindet. Die denkbar feinsten elektrisch leitenden Drähte aus aneinandergereihten Kohlenstoffatomen können so mit einer Isolierung versehen werden. Damit ist der Forschungsgruppe um Prof. John A. Gladysz vom Institut für Organische Chemie der Universität Erlangen-Nürnberg ein neuer bahnbrechender Erfolg in der Nanotechnologie gelungen. Das Ergebnis ihrer Strategie ist zudem in einem zweiten Sinn einzigartig: es entsteht eine Doppelhelix, die in ihrer Struktur der DNS gleicht, aber ohne die "Querstützen", welche die zwei Stränge im Zellkern wie bei einer Leiter zusammenhalten. Derartige Moleküle waren bisher nicht bekannt.

... mehr zu:
»Draht »Metall »Molekül »Nanotechnologie


Drei Mitarbeiter von Prof. Gladysz, die Diplom-Chemiker Jürgen Stahl, Eike Bauer und Wolfgang Mohr, beschreiben in der Juni-Ausgabe der Fachzeitschrift "Angewandte Chemie" zwei unterschiedliche Wege zur Synthese von isolierten "molekularen Drähten". Der eine besteht darin, den Prozess der Selbstorganisation in Gang zu setzen, der zur Bildung der schützenden Doppelspirale führt. Statt der Natur ihren Lauf zu lassen, treibt der andere dagegen den zielgerichteten Zusammenbau neuer Materialien in der Organometallchemie voran. Beide zielen auf die Lösung eines Problems ab, das sich mit den Fortschritten in der Miniaturisierung von Bauteilen für Elektrik und Elektronik stellt.

Während der letzten fünf Jahre machten Chemiker schnelle Fortschritte bei der Synthese molekularer Versionen von stromführenden Bauteilen wie Schaltern, Transistoren oder Gleichrichtern und von komplizierteren Geräten wie Motoren und Maschinen. Mit dem schrittweisen Aufbau solcher "funktionaler Materialien" aus Molekülen wurde die Nanotechnologie geboren. Dazu zählen neuartige, drahtähnliche Moleküle, die in der Arbeitsgruppe von Prof. Glasdysz entwickelt werden. Zwei Übergangsmetalle sind darin durch eine stabähnliche lineare Kohlenstoffkette verbunden. Die Metalle können oxidiert oder reduziert werden; Elektronen und Ladung können dann von einem Metall zum anderen wandern. Der Erlanger Gruppe gelang es, mehr als 20 Kohlenstoffatome aneinanderzureihen, was einen Abstand von drei Nanometern (Milliardstel eines Meters) zwischen den Metallen bedeutet. Andere Forscher haben bimetallische Verbindungen mit anderen Arten von starren, verbrückenden Liganden hergestellt, doch lineare Kohlenstoffketten stellen das äußerste mögliche Limit der Miniaturisierung dar.

Genau wie Haushaltskabel müssen solche molekularen Drähte isoliert werden, um das Molekül zu schützen und einen ungestörten Stromfluss zu ermöglichen. Werden einem Molekül Elektronen entzogen oder zugeführt, wird es häufig reaktiver, und zerstörerische Reaktionen mit anderen stromführenden Bausteinen, dem Lösungsmittel oder der Luft sind zu befürchten. Hüllen um solche Moleküle, die die Rolle der Isolationsschicht beim vertrauten Elektrokabel übernehmen, sind offensichtlich wünschenswert, doch bisher ist zur Verwirklichung wenig geschehen.

Prof. Gladysz und seine Mitarbeiter stellten zunächst Kettenmoleküle mit einer Kohlenstoffbrücke zwischen zwei Platinatomen her, deren Liganden (angehängte Gruppen oder Atome) leicht ausgetauscht werden konnten. Danach synthetisierte das Team Moleküle, in denen zwei Phosphordonoratome durch eine Kette von Methylengruppen verbunden sind. Methylen- oder CH2-Gruppen sind die Grundbausteine von gesättigtem Fett und Paraffinwachs, zweier Isolatoren. Diese flexible Kette muss mindestens 50% länger sein als die feste Kohlenstoffbrücke. So kann sie sich um den "Draht" wickeln, wenn die Enden beider Arten von Ketten sich verbinden, wobei die Phosphoratome die zuvor am Platin angelagerten Liganden ersetzen.

Zwei "Isolator-Moleküle" docken auf diese Weise am molekularen Draht an. Das Ergebnis dieses selbstorganisierenden Prozesses versetzt Prof. Gladysz in Begeisterung: "Das Endresultat ist ein doppelhelicales Molekül von atemberaubender Schönheit." Die treibende Kraft für die Anordnung in einer Doppelspirale ist nicht offensichtlich; es scheint, als ob die Moleküle diese Struktur "nach Belieben" ausbilden.


| Universität Erlangen-Nürnberg

Weitere Berichte zu: Draht Metall Molekül Nanotechnologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen