Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bekämpfung von Getreidepilzen: Natürliche Alternative zum chemischen Pflanzenschutz

12.11.2013
Gießener Wissenschaftlerinnen und Wissenschaftler entwickeln mit der RNA-Interferenz-Technik eine innovative und hochspezifische Methode zur Bekämpfung von Getreidepilzen

Pathogene Pilze der Gattung Fusarium sind ursächlich für eine Vielzahl schwerwiegender Pflanzenkrankheiten im Getreideanbau, die meist unter dem Begriff „Ährenfusariosen“ zusammengefasst werden und weltweit für immense Ernteverluste und Nahrungsmittelverunreinigungen sorgen.

Der Einsatz konventioneller chemischer und biologischer Pflanzenschutzmittel ist nicht nur umweltschädlich, sondern auch immer öfter wirkungslos, da Fusarien zunehmend Resistenzen gegen die wenigen noch zugelassenen Wirkstoffe entwickeln.

Wissenschaftlerinnen und Wissenschaftler der Justus-Liebig-Universität Gießen(JLU) haben nun mit Kolleginnen und Kollegen der französischen Universität Nizza-Sophia Antipolis ein innovatives, hochspezifisches Verfahren entwickelt, mit dem sich der Getreidepilz Fusarium graminearum gezielt unschädlich machen lässt. Der Vorteil dieser Technik ist die hohe Selektivität. Somit werden negative Effekte auf Nützlinge, wie Bienen, und auch den Menschen verhindert. Die Ergebnisse sind in Proceedings of the National Academy of Sciences (PNAS) veröffentlicht worden.

Schlüsseltechnologie des Verfahrens ist die RNA-Interferenz-Technik (RNAi-Technik). Sie basiert auf einem natürlichen Regelmechanismus, für dessen Entdeckung 2006 der Nobelpreis für Physiologie/Medizin vergeben wurde. Von Pflanzen wird der RNAi-Mechanismus normalerweise genutzt, um auf Umweltveränderungen schnell reagieren zu können und zum Beispiel Viruserkrankungen abzuwehren. Die Pflanzen bilden dabei kurze RNA-Fragmente (small interfering RNA, siRNA), die sowohl die Regulation eigener Gene kontrollieren, als auch zur Inaktivierung von Gene eindringender Parasiten oder Viren fähig sind und die Pflanze so vor Krankheit schützen.

Dem Team von Prof. Dr. Karl-Heinz Kogel vom Institut für Phytopathologie und Angewandte Zoologie der JLU gelang es Pflanzen zu züchten, die ein RNAi-Molekül produzieren, das den Getreidepilz Fusarium graminearum gezielt unschädlich macht. Bei Gerste und bei der Acker-Schmalwand erzielten die Forscherinnen und Forscher damit eine außergewöhnlich hohe Widerstandsfähigkeit gegen den Pilz.

Die RNAi-Technik lässt sich im Pflanzenschutz – wie im Gießener Ansatz – biotechnologisch nutzen, zudem könnte die Technik aber auch in abgewandelter Form im konventionellen Anbau genutzt werden. Langfristig wird diese innovative Methode chemische und biologische Pflanzenschutzmittel ersetzen können, zumal sie – über die für einen Organismus spezifischen RNAi-Moleküle – an alle Schädlinge beziehungsweise Erreger angepasst werden kann.

Publikation:
Aline Koch, Neelendra Kumar, Lennart Weber, Harald Keller, Jafargholi Imani, Karl-Heinz Kogel: Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase-encoding genes confers strong resistance to Fusarium spec. Proceedings of the National Academy of Sciences (PNAS). DOI: 10.1073/pnas.1306373110
Kontakt:
Prof. Dr. Karl-Heinz Kogel
Institut für Phytopathologie und Angewandte Zoologie
Heinrich-Buff-Ring 26-32, 35392 Gießen
Telefon: 0641 99-37490

Caroline Link | idw
Weitere Informationen:
http://www.uni-giessen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics