Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bauplan einer bakteriellen Solaranlage

15.05.2009
Ein internationales Forscherteam klärt die Struktur der Chlorosomen in grünen Schwefelbakterien auf

Wer von Licht lebt, wo es wenig Licht gibt, braucht dafür eine besondere Antenne. Das grüne Schwefelbakterium Chlorobaculum tepidum, das unter anderem in tiefen, dunklen Gewässerschichten lebt, besitzt solche Antennen. Deren Bauplan hat ein internationales Team um Wissenschaftler des Max-Planck-Instituts für bioanorganische Chemie jetzt enthüllt.


Solarkraftwerk in Röhrenform: Chlorophylle ordnen sich in den Chlorosomen von C. tepidum in Helices an, die konzentrische Röhren bilden (der grüne Ring zeigt die Struktur im Detail). Diese Chlorosomen sammeln Licht besonders effizient und könnten als Modell für künstliche photosynthetische Lichtantennen dienen. Bild: G. Oostergetel / Universität Groningen

Indem die Forscher auf raffinierte Weise verschiedene Experimente und Berechnungen kombinierten, bestimmten sie, wie die lichtempfindlichen Chlorophyll-Moleküle in den Chlorosomen angeordnet sind. Chlorosomen sind die effizientesten Apparate der Natur, um Licht zu sammeln. Ihre Struktur könnte als Blaupause für künstliche Systeme dienen, die Sonnenenergie nach dem Vorbild der Photosynthese in Biosprit umwandeln. (PNAS, Early Edition 12. Mai 2009; DOI: 10.1073/pnas.0903534106)

Eine Fläche Baden-Württembergs würde vermutlich reichen, um im Jahr 2050 Europas Treibstoffbedarf zu decken - wenn sich zehn Prozent der Energie, die als Sonnenlicht auf diese Fläche fällt, in chemische Energie, sprich Biosprit, verwandeln ließe. Um den Durst von Fahrzeugen, Flugzeugen und Schiffen dagegen mit Bioethanol oder -diesel zu stillen, wie er derzeit aus Biomasse erzeugt wird, wären die Bundesrepublik und Frankreich zusammen als Anbaufläche wahrscheinlich nicht groß genug.

Doch zehn Prozent des einfallenden Sonnenlichts in einen Treibstoff, sei es Ethanol oder Wasserstoff, zu verwandeln, schafft bislang keine Technik - aber der ein oder andere Mikroorganismus. Zum Beispiel das grüne Schwefelbakterium Chlorobaculum tepidum, das mit seinen Chlorosomen sehr ungewöhnliche und extrem effiziente Solarkraftwerke zur Lichtabsorption besitzt.

Daher untersucht Alfred R. Holzwarth die Chlorosomen mit seiner Arbeitsgruppe am Max-Planck-Institut für bioanorganische Chemie in Mülheim a. d. Ruhr schon seit einigen Jahren - mit dem Ziel, die bakteriellen Solarkraftwerke zu kopieren. Diesem Ziel ist er jetzt ein Stück näher gekommen. Ein internationales Forscherteam, an dem neben Alfred Holzwarth und Michael Reus vom Mülheimer Max-Planck-Institut auch Wissenschaftler der Universitäten in Leiden und Groningen sowie der Penn State University in Philadelphia beteiligt waren, hat jetzt nämlich herausgefunden, wie die Chlorosomen gebaut sind.

Demnach stapelt sich das Chlorophyll in den Chlorosomen zu Helices. "Bislang wurden verschiedene Möglichkeiten diskutiert, wie die einzelnen Chlorophyll-Komplexe nebeneinander angeordnet sind", sagt Alfred Holzwarth: "Diese Frage haben wir jetzt geklärt." Und nicht nur diese: Auch von der Anordnung der Chlorophyll-Stapel gab es keine klare Vorstellungen. Die meisten Forscher, die in den bakteriellen Solarkraftwerken Anregungen für die Biosprit-Produktion von morgen suchen, favorisierten Schichten. Eine falsche Vorstellung, wie das Forscherteam jetzt festgestellt hat: "Die einfachen Chlorophyll-Helices sind wiederum zu einer Helix aufgewickelt und bilden so eine Röhre", erklärt Holzwarth. Und auch die einzelnen Röhren müssen sich noch einmal einer Ordnung unterwerfen: Mehrere Röhren mit unterschiedlichem Durchmesser stecken nämlich wie in einem Teleskopstab ineinander.

"Anders als in höheren Pflanzen entsteht diese komplexe hierarchische Struktur völlig selbstorganisiert", sagt Holzwarth. In höheren Pflanzen greifen Proteine vermittelnd ein: sie umschließen das Chlorophyll und zwingen es auf diese Weise in eine Struktur. "Da die Chlorosomen nur Chlorophyll enthalten, bieten sie sich als Vorbilder für selbstorganisierende technische Lichtantennen an", sagt Alfred Holzwarth. Die Proteine in den Chloroplasten höherer Pflanzen lassen sich nämlich höchstens mit großem Aufwand imitieren.

Wie es in den Lichtantennen von C. tepidum aussieht, haben die Forscher nur auf einem Umweg und mit einer neuen Methode herausgefunden. Bei den Chlorosomen versagt nämlich die Röntgenkristallografie - das gängige Verfahren, um die Struktur von Eiweißen und anderen Biomolekülen zu bestimmen: Die einzelnen Chlorosomen selbst eines einzigen Bakteriums unterscheiden sich in ihrer Größe und gruppieren sich daher nicht zu regelmäßigen Kristallen. Das aber ist eine Voraussetzung, um sich mithilfe der Röntgenkristallografie ein Bild von einer Substanz zu verschaffen.

Um trotzdem einen detaillierten Bauplan der Chlorosomen zeichnen zu können, haben die Forscher der Universität Leiden mit der Festkröper-Kernspin-Spektroskopie die Beziehungen untersucht, die benachbarte Chlorophyll-Komplexe unterhalten. Ihre Kollegen von der Universität Groningen haben die Chlorosomen zudem bei tiefen Temperaturen mit einem Elektronen-Mikroskop durchleuchtet und erhielten so ein Bild von der gröberen Struktur. In Rechnungen hat das Forscherteam diese Teilansichten dann zu einem Gesamtbild der exakten molekularen Anordnung kombiniert.

Doch dieses Bild blieb zunächst unscharf, weil die Chlorosomen im Wildtyp, der natürlichen Form von C. tepidum, mehrere Chlorophyll-Arten enthalten. Die Varianten unterscheiden sich in ihren chemischen Anhängseln. Kleine Unterschiede, die aber das Bild verwischen. "Daher haben unsere Kollegen von der Penn State University eine Mutante des Bakteriums erzeugt, die nur eine Sorte des Chlorophylls produziert", sagt Holzwarth: Die vereinfachten Chlorosomen der Mutanten lieferten dem Team nun scharfe Messungen und eine detaillierte Struktur, die die Forscher mit dem vagen Bild der Chlorosomen im Wildtyp verglichen.

Bei dem Vergleich fanden sie Gemeinsamkeiten, aber auch Unterschiede: Sowohl die Chlorosomen der Mutante als auch des Wildtyps sind aus konzentrischen Röhren aufgebaut. Die Röhren der Mutante sind aber anders gewickelt: Während sich die Chlorophyll-Helices im Wildtyp wie die Fäden eines Seils parallel zur Achse der Röhre winden, bilden sie in der Mutante gestapelte Ringe. "Wir waren ziemlich überrascht, dass ein so kleiner Unterschied in der chemischen Zusammensetzung so große Auswirkungen auf die Struktur hat", sagt Holzwarth.

Der Vergleich zwischen Wildtyp und Mutante ermöglichte den Forschern nicht nur, den Chlorosomen-Bauplan von Chlorobaculum tepidum zu lesen, er gewährte ihnen auch einen Blick in die Evolutionsgeschichte des Bakteriums. Dass der Einzeller in seinen Lichtantennen verschiedene Chlorophyll-Varianten stapelt, stellt nämlich einen relativ jungen Schritt der Evolution dar. Der erschwert den Forschern zwar, seinen Aufbau zu enthüllen, verbreitert aber das Spektrum des Sonnenlichts, das die Lichtantennen einfangen können, und erhöht so deren Effizienz.

Ehe Alfred Holzwarth und seine Mitarbeiter sich in einem derartigen Feinschliff versuchen, mit dem die Evolution die Effizienz der Lichtantennen getrimmt hat, müssen sie erst noch einige prinzipielle Probleme lösen. "Wir wollen jetzt mehr darüber herausfinden, wie die Lichtabsorption in den Chlorosomen funktioniert", sagt Holzwarth. Nur dann verspricht die Suche nach künstlichen Antennen mit ähnlicher Effizienz Erfolg. Doch auch das markiert nur die Hälfte der Strecke, bis sich die Energie der Sonne effizient in Biosprit binden lässt, wie Alfred Holzwarth erklärt: "Wir müssen die Antennen an ein einfaches System koppeln, das die eingefangene Lichtenergie in chemische Energie verwandelt, das also wie die Photosynthese aus Kohlendioxid Zucker aufbaut oder aus Wasser Wasserstoff abspaltet."

Originalveröffentlichung:

Swapna Ganapathy, Gert T. Oostergetel, Piotr K. Wawrzyniak, Michael Reus, Aline Gomez Maqueo Chew, Francesco Buda, Egbert J. Boekema, Donald A. Bryant, Alfred R. Holzwarth, Huub J. M. de Groot
Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes

PNAS, Early Edition 12. Mai 2009; DOI: 10.1073/pnas.0903534106

Weitere Informationen erhalten Sie von:

Prof. Dr. Alfred R. Holzwarth
Max-Planck-Institut für bioanorganische Chemie, Mülheim an der Ruhr
Tel.: +49 208 306-3571
E-Mail: holzwarth@mpi-muelheim.mpg.de

Dr. Felicitas von Aretin | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien aus dem Blut «ziehen»
07.12.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie