Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bauanleitung für Nanolampen

18.06.2009
Mit zwei Verfahren lässt sich die Größe von Nanopartikeln kontrollieren, die als winzige Lichtquellen dienen könnten

Für die kleinsten Lampen der Welt gibt es jetzt gleich zwei neue Bauanleitungen. Nach diesen Plänen haben Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung Nanopartikel maßgeschneidert, die als Positionsleuchten an Zellproteinen, künftig vielleicht aber auch als Lichtquellen für Bildschirme oder für die optische Informationstechnik dienen könnten. In mikroskopisch kleinen Membranbläschen haben die Forscher Cadmiumsulfid-Teilchen hergestellt. Je nachdem, welcher ihrer Anleitungen sie folgen, können diese vier oder 50 Nanometer groß sein. Da die Membranbläschen etwa so groß sind wie lebende Zellen, könnte die Arbeit der Wissenschaftler auch einen Hinweis darauf geben, wie Nanostrukturen in der Natur entstehen. (Small, published online: 8. Juni 2009/DOI: 10.1002/smll.200900560)


Chemie in einer Blase: Vesikel mit verschiedenen Ausgangsstoffen tragen in ihrer Membran unterschiedliche Leuchtstoffe (a). Wenn die Bläschen verschmelzen, bilden sich rot leuchtende Nanopartikel (b). Im Transmissionselektronenmikroskop sind die Partikel als helle Punkte zu erkennen (c). Bild: MPI für Kolloid- und Grenzflächenforschung

Bei Arbeiten in kleinsten Dimensionen sind Zellen und Mikroorganismen große Meister. Wie besonders effiziente Mikrofabriken stellen sie nur wenige Nanometer, also Millionstel Millimeter, große Teilchen und Strukturen aus anorganischem Material wie etwa Kalk her. Diese Fähigkeit könnten Zellen zwei verschiedenen Kniffen verdanken: zum einen biochemischen Hilfsmitteln, nämlich Peptiden, die den Kalk in eine gewünschte Form bringen. Zum anderen könnte ihnen dabei helfen, dass sie selbst sehr klein sind. Daher können auch die Kalkpartikel nicht unbegrenzt wachsen - wenn der Zelle das Calciumcarbonat, der Baustoff von Kalk, ausgeht, ist Schluss.

"Dass Zellen quasi ein geschlossenes Reaktionsgefäß bilden, haben wir uns zum Vorbild genommen, um Nanopartikel herzustellen", sagt Rumiana Dimova. Ihre Arbeitsgruppe erforscht am Max-Planck-Institut für Kolloid- und Grenzflächenforschung Membranen, wie sie auch Zellen umhüllen. Aus Lecithin-Membranen, die biologischen Membranen ähneln, formen die Chemikerin und ihre Mitarbeiter rund 50 Mikrometer große Bläschen. Diese Membranbläschen - die Wissenschaftler sprechen von Vesikeln - bilden ebenso wie Zellen ein geschlossenes Reaktionsgefäß. Die Membranbläschen laden die Wissenschaftler jeweils mit einem von zwei Ausgangsstoffen für die Nanopartikel.

Von hier an folgen die Forscher zwei unterschiedlichen Anleitungen. Im einen Fall stellen sie Bläschen mit beiden Ausgangsstoffen her, einmal mit Natriumsulfid und einmal Cadmiumchlorid. Die Bläschen mit den unterschiedlichen Ladungen bringen die Wissenschaftler anschließend zusammen und vereinigen jeweils zwei Vesikel zu einem größeren Bläschen - indem sie auf den Bläschen-Cocktail einen kurzen, aber sehr starken elektrischen Puls abgeben. Der Elektroschock verschmilzt die Membranen zweier benachbarter Bläschen.

In vielen Fällen vereinigen sich dabei zwei Bläschen mit unterschiedlichen Ausgangsstoffen. Diese reagieren dann zu Cadmiumsulfid, das sich in Wasser nicht löst und daher in Form von Nanopartikeln ausfällt. "Da die Ausgangsstoffe in den fusionierten Bläschen nur begrenzt vorhanden sind, wachsen die Partikel nur, bis sie vier Nanometer groß sind", erklärt Rumiana Dimova. Den ganzen Prozess konnten die Wissenschaftler im Mikroskop gut verfolgen, weil sie in die Membranen der unterschiedlich beladenen Vesikel verschiedene Leuchtstoffe einbauten. Und auch die Nanopartikel sahen die Forscher heranwachsen, weil die Teilchen wie kleine Lampen leuchten.

In ihrem zweiten Verfahren stellen die Forscher nur Bläschen mit einem der Ausgangsstoffe her. Nachdem sich die Bläschen gebildet haben, nehmen die Forscher sie anders als im ersten Prozedere nicht aus der Reaktionskammer. Stattdessen bleiben die Bläschen über kleine Membrankanäle wie Luftballone an Schnüren mit ihrer Unterlage verbunden und stehen dabei in derselben Lösung, die sie auch in ihrem Inneren enthalten. Das ändern die Forscher um Rumiana Dimova jetzt aber: Sie tauschen die Lösung mit der ersten Zutat für die Nanopartikel gegen eine mit dem zweiten Bestandteil aus. Im Inneren der Bläschen ändert sich dabei aber zunächst nichts. Nur allmählich kriecht die zweite Zutat zwischen Membran und Unterlage in den Kanal zu dem Bläschen. Im Bläschen, wo die andere Zutat schon wartet, wachsen dann wieder die Nanopartikel - diesmal bis zu einer Größe von 50 Nanometern.

"Mit unserer Methode haben wir erstmals in Vesikeln, die der Größe der Zellen entsprechen, Partikel mit einem bestimmten Durchmesser hergestellt", sagt Rumiana Dimova. Auch vorher haben Wissenschaftler schon Nanopartikel in Membranbläschen hergestellt. Die Membranbläschen waren mit einigen Nanometern Durchmesser aber sehr viel kleiner als die Mikrobläschen der Potsdamer Forscher und auch viel kleiner als biologische Zellen. Nicht zuletzt deshalb dachten Biologen, Zellen seien bei der Synthese von Nanopartikeln auf die Hilfe von Peptiden angewiesen. Doch es geht auch ohne, wie Rumiana Dimova und ihre Mitarbeiter festgestellt haben.

[PH]

Originalveröffentlichung:

Peng Yang, Reinhard Lipowsky, and Rumiana Dimova
Nanoparticle Formation in Giant Vesicles: Synthesis in Biomimetic Compartments
Small, published online, 8. Juni 2009/DOI: 10.1002/smll.200900560
Weitere Informationen erhalten Sie von:
Dr. Rumiana Dimova
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam
Tel.: +49 331 567-9615
Fax: +49 331 567-9612
E-Mail: Rumiana.Dimova@mpikg.mpg.de

Dr. Felicitas von Aretin | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen
27.06.2017 | Johannes Gutenberg-Universität Mainz

nachricht Glykane als Biomarker für Krebs?
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie