Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bauanleitung für Nanolampen

18.06.2009
Mit zwei Verfahren lässt sich die Größe von Nanopartikeln kontrollieren, die als winzige Lichtquellen dienen könnten

Für die kleinsten Lampen der Welt gibt es jetzt gleich zwei neue Bauanleitungen. Nach diesen Plänen haben Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung Nanopartikel maßgeschneidert, die als Positionsleuchten an Zellproteinen, künftig vielleicht aber auch als Lichtquellen für Bildschirme oder für die optische Informationstechnik dienen könnten. In mikroskopisch kleinen Membranbläschen haben die Forscher Cadmiumsulfid-Teilchen hergestellt. Je nachdem, welcher ihrer Anleitungen sie folgen, können diese vier oder 50 Nanometer groß sein. Da die Membranbläschen etwa so groß sind wie lebende Zellen, könnte die Arbeit der Wissenschaftler auch einen Hinweis darauf geben, wie Nanostrukturen in der Natur entstehen. (Small, published online: 8. Juni 2009/DOI: 10.1002/smll.200900560)


Chemie in einer Blase: Vesikel mit verschiedenen Ausgangsstoffen tragen in ihrer Membran unterschiedliche Leuchtstoffe (a). Wenn die Bläschen verschmelzen, bilden sich rot leuchtende Nanopartikel (b). Im Transmissionselektronenmikroskop sind die Partikel als helle Punkte zu erkennen (c). Bild: MPI für Kolloid- und Grenzflächenforschung

Bei Arbeiten in kleinsten Dimensionen sind Zellen und Mikroorganismen große Meister. Wie besonders effiziente Mikrofabriken stellen sie nur wenige Nanometer, also Millionstel Millimeter, große Teilchen und Strukturen aus anorganischem Material wie etwa Kalk her. Diese Fähigkeit könnten Zellen zwei verschiedenen Kniffen verdanken: zum einen biochemischen Hilfsmitteln, nämlich Peptiden, die den Kalk in eine gewünschte Form bringen. Zum anderen könnte ihnen dabei helfen, dass sie selbst sehr klein sind. Daher können auch die Kalkpartikel nicht unbegrenzt wachsen - wenn der Zelle das Calciumcarbonat, der Baustoff von Kalk, ausgeht, ist Schluss.

"Dass Zellen quasi ein geschlossenes Reaktionsgefäß bilden, haben wir uns zum Vorbild genommen, um Nanopartikel herzustellen", sagt Rumiana Dimova. Ihre Arbeitsgruppe erforscht am Max-Planck-Institut für Kolloid- und Grenzflächenforschung Membranen, wie sie auch Zellen umhüllen. Aus Lecithin-Membranen, die biologischen Membranen ähneln, formen die Chemikerin und ihre Mitarbeiter rund 50 Mikrometer große Bläschen. Diese Membranbläschen - die Wissenschaftler sprechen von Vesikeln - bilden ebenso wie Zellen ein geschlossenes Reaktionsgefäß. Die Membranbläschen laden die Wissenschaftler jeweils mit einem von zwei Ausgangsstoffen für die Nanopartikel.

Von hier an folgen die Forscher zwei unterschiedlichen Anleitungen. Im einen Fall stellen sie Bläschen mit beiden Ausgangsstoffen her, einmal mit Natriumsulfid und einmal Cadmiumchlorid. Die Bläschen mit den unterschiedlichen Ladungen bringen die Wissenschaftler anschließend zusammen und vereinigen jeweils zwei Vesikel zu einem größeren Bläschen - indem sie auf den Bläschen-Cocktail einen kurzen, aber sehr starken elektrischen Puls abgeben. Der Elektroschock verschmilzt die Membranen zweier benachbarter Bläschen.

In vielen Fällen vereinigen sich dabei zwei Bläschen mit unterschiedlichen Ausgangsstoffen. Diese reagieren dann zu Cadmiumsulfid, das sich in Wasser nicht löst und daher in Form von Nanopartikeln ausfällt. "Da die Ausgangsstoffe in den fusionierten Bläschen nur begrenzt vorhanden sind, wachsen die Partikel nur, bis sie vier Nanometer groß sind", erklärt Rumiana Dimova. Den ganzen Prozess konnten die Wissenschaftler im Mikroskop gut verfolgen, weil sie in die Membranen der unterschiedlich beladenen Vesikel verschiedene Leuchtstoffe einbauten. Und auch die Nanopartikel sahen die Forscher heranwachsen, weil die Teilchen wie kleine Lampen leuchten.

In ihrem zweiten Verfahren stellen die Forscher nur Bläschen mit einem der Ausgangsstoffe her. Nachdem sich die Bläschen gebildet haben, nehmen die Forscher sie anders als im ersten Prozedere nicht aus der Reaktionskammer. Stattdessen bleiben die Bläschen über kleine Membrankanäle wie Luftballone an Schnüren mit ihrer Unterlage verbunden und stehen dabei in derselben Lösung, die sie auch in ihrem Inneren enthalten. Das ändern die Forscher um Rumiana Dimova jetzt aber: Sie tauschen die Lösung mit der ersten Zutat für die Nanopartikel gegen eine mit dem zweiten Bestandteil aus. Im Inneren der Bläschen ändert sich dabei aber zunächst nichts. Nur allmählich kriecht die zweite Zutat zwischen Membran und Unterlage in den Kanal zu dem Bläschen. Im Bläschen, wo die andere Zutat schon wartet, wachsen dann wieder die Nanopartikel - diesmal bis zu einer Größe von 50 Nanometern.

"Mit unserer Methode haben wir erstmals in Vesikeln, die der Größe der Zellen entsprechen, Partikel mit einem bestimmten Durchmesser hergestellt", sagt Rumiana Dimova. Auch vorher haben Wissenschaftler schon Nanopartikel in Membranbläschen hergestellt. Die Membranbläschen waren mit einigen Nanometern Durchmesser aber sehr viel kleiner als die Mikrobläschen der Potsdamer Forscher und auch viel kleiner als biologische Zellen. Nicht zuletzt deshalb dachten Biologen, Zellen seien bei der Synthese von Nanopartikeln auf die Hilfe von Peptiden angewiesen. Doch es geht auch ohne, wie Rumiana Dimova und ihre Mitarbeiter festgestellt haben.

[PH]

Originalveröffentlichung:

Peng Yang, Reinhard Lipowsky, and Rumiana Dimova
Nanoparticle Formation in Giant Vesicles: Synthesis in Biomimetic Compartments
Small, published online, 8. Juni 2009/DOI: 10.1002/smll.200900560
Weitere Informationen erhalten Sie von:
Dr. Rumiana Dimova
Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Potsdam
Tel.: +49 331 567-9615
Fax: +49 331 567-9612
E-Mail: Rumiana.Dimova@mpikg.mpg.de

Dr. Felicitas von Aretin | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen