Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bald bessere Hilfe bei Bleivergiftungen?

14.01.2009
Blei aus dem Blut entfernen mit selektiven Bleirezeptoren und Magnetnanopartikeln

Blei ist eines der gefährlichsten Schwermetalle und vor allem für Kinder sehr giftig. Sichere, effektive Entgiftungsverfahren werden gesucht. Wie in der Zeitschrift Angewandte Chemie berichtet, hat ein koreanisches Team um Won Seok Han und Jong Hwa Jung nun einen neuen, vielversprechenden Ansatz entwickelt.

Er beruht auf einem Fluoreszenzrezeptor, der Blei-Ionen selektiv und stark bindet. Der Clou: Der Rezeptor ist an magnetische Nanopartikel gebunden und ließe sich mitsamt seiner Blei-Ladung bei einer Blutwäsche einfach mit Magneten abtrennen. Mithilfe der Magnetpartikel gelang es den Forschern in vitro, aus mit Blei versetzten Blutproben 96 % der enthaltenen Blei-Ionen zu entfernen.

Meist werden Blei und Bleisalze über Nahrungsmittel oder das Trinkwasser aufgenommen. Bleirohre und bleihaltige Glasuren von Keramikgefäßen sind oft die Bleiquelle. Häufiger als die akute ist die schleichende Bleivergiftung, wenn kleinere Mengen des Metalls über einen längeren Zeitraum akkumuliert werden. Symptome wie Muskellähmungen, Verwirrung, Gedächtnisverlust und Blutarmut sind die Folge. Derzeit werden Bleivergiftungen mit einer Chelattherapie behandelt, die allerdings gravierende Nebenwirkungen hat: Außer Blei binden die Chelatbildner weitere Mineralien und Spurenelemente und schwemmen diese lebenswichtigen Stoffe aus dem Körper aus. Nun ist eine Alternative in Sicht.

Ausgangspunkt für die Idee der Forscher: Es gibt spezielle Sonden, die zum spezifischen Nachweis verschiedener Metall-Ionen eingesetzt werden, so auch von Blei. Bindet ein Blei-Ion an einen solchen "Blei-Rezeptor", wird dessen Fluoreszenz "angeknipst", er beginnt zu leuchten. Der Rezeptor bindet außer Blei keine anderen Metall-Ionen. Ein derart selektiver Rezeptor ließe sich vielleicht nicht nur zum Blei-Nachweis, sondern auch zur Entgiftung einsetzen, so die Überlegung. Die Wissenschaftler synthetisierten einen Abkömmling des Blei-Rezeptors, den sie zusätzlich mit einem speziellen chemischen "Anker" ausstatteten. Über diesen Anker knüpften sie die Rezeptormoleküle auf die Oberfläche magnetischer Nanopartikel aus Siliciumdioxid-ummanteltem Nickel.

Eine Entgiftung könnte im Prinzip wie bei einer Blutwäsche (Dialyse) erfolgen: Das Blut wird aus dem Körper geleitet und in einer speziellen Kammer mit den biokompatiblen Magnetpartikeln versetzt. Mithilfe von Magnetfeldern ließen sich die beladenen Magnetpartikel dann entfernen. Das gereinigte Blut wird dem Patienten anschließend wieder zugeführt. Anders als bei der Chelattherapie werden dem Körper dabei keine lebenswichtigen Mineralien und Spurenelemente entzogen.

Angewandte Chemie: Presseinfo 02/2009

Autor: Jong Hwa Jung, Gyeongsang National University, Jinju (Korea), mailto:jonghwa@gnu.ac.kr

Angewandte Chemie 2009, 121, No. 7, doi: 10.1002/ange.200804714

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.gdch.de/
http://presse.angewandte.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie