Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien mit Vuvuzela

21.03.2013
Kanalprotein dient Mikroben als Spritze für Giftstoffe

Das Bakterium Photorhabdus luminescens ist ein unverzichtbarer Begleiter mancher Fadenwürmer. Diese Würmer befallen Insektenlarven und infizieren sie dabei mit den Bakterien. Die Erreger attackieren die Zellen ihrer Opfer mit einem tödlichen Cocktail aus verschiedenen Giftstoffen.


Der Toxin-Komplex besteht aus drei Komponenten: TcA (gelb), TcB und TcC (orange). Der Komplex bindet an einen Rezeptor in der Membran einer Wirtszelle und wird durch Endozytose aufgenommen (links). Eine Änderung des pH-Werts verändert den dreidimensionalen Aufbau: Der zentrale Kanal schiebt sich wie die Kanüle einer Spritze durch die Zellmembran (Mitte). TcB und TcC können so in das Zellinnere gelangen. Dabei wird TcC entpackt und verliert seine ursprüngliche Struktur.
© MPI f. molekulare Physiologie/Raunser


Molekulare Vuvuzela: Der zentrale Kanal des TcA-Proteins (hellgrün) ist wie das südafrikanische Musikinstrument geformt (dunkelgrün: äußere Hülle, schwarz: Zellmembran der Wirtszelle).
© MPI f. molekulare Physiologie/Raunser

Wissenschaftler am Max-Planck Institut für molekulare Physiologie in Dortmund haben zusammen mit Kollegen der Universität Freiburg und der Jacobs Universität Bremen herausgefunden, dass ein wichtiger Giftstoff-Komplex der Bakterien wie eine Spritze funktioniert. Er gelangt in von der Zellmembran abgeschnürten Vesikeln in die Wirtszellen und verändert dort seine Struktur. Durch einen Vuvuzela-ähnlichen Proteinkanal dringt dann ein Teil des Giftstoff-Komplexes durch die Membran des Zellbläschens ins Zellinnere ein und tötet die Zelle.

Wichtige Giftstoffe von Photorhabdus luminescens gehören zu den ABC-Toxinen, die aus den drei Proteinkomponenten TcA, TcB und TcC bestehen. Der Toxin-Komplex dockt zunächst an Rezeptormoleküle auf der Membran der Wirtszellen an und wird in kleinen Membranbläschen, sogenannten Vesikeln, ins Innere der Zelle geschleust. Von dort gelangt die TcC-Komponente in die Zellflüssigkeit und zerstört das Proteinskelett der Zelle. Unklar war bislang jedoch, wie das Protein durch die Vesikelmembran hindurch schlüpfen kann.

Die Wissenschaftler konnten nun erstmals mittels Kryo-Elektronenmikroskopie und Einzelpartikelanalyse die Struktur der ABC-Toxine von Photorhabdus luminescens entschlüsseln. Demnach besteht das TcA-Protein des Bakteriums aus fünf Untereinheiten, die zusammen die Form einer Glocke besitzen. „Im Inneren der Glocke bilden die Untereinheiten einen Kanal. Er hat einen breiten und einem schmalen Durchlass und sieht deshalb aus wie das berühmt-berüchtigte Musikinstrument südafrikanischer Fußballfans“, erklärt Stefan Raunser vom Max-Planck-Institut für molekulare Physiologie.

Sobald der pH-Wert in der Umgebung sinkt oder steigt – beispielsweise, wenn die Flüssigkeit in den Vesikeln angesäuert wird – öffnet sich die äußere Hülle des Toxins und gibt den zentralen Kanal frei. „Der Kanal wird nun wie die Kanüle einer Spritze durch die Zellmembran geschoben“, sagt Raunser. TcB und TcC werden in den Bereich zwischen Kanal und Hülle gezogen. Dort wird TcC entpackt und verliert seine ursprüngliche Struktur. „Möglicherweise sind ein Spannungsgefälle oder spezielle Entpackungsproteine wie zum Beispiel TcB notwendig, damit TcC aus dem Vesikel ins Innere der Zelle gelangt und dort seine tödliche Wirkung entfalten kann.“

Die Ergebnisse zeigen, dass das TcA der Fadenwurm-Bakterien eine ähnliche Form besitzt wie Toxine des Pest-Erregers oder anderer Bakterien. „Mit diesen Ergebnissen können wir also möglicherweise auch die Wirkungsweise von Bakterien verstehen, die Krankheiten beim Menschen hervorrufen“, sagt Raunser. Außerdem könnten die Erkenntnisse helfen, schädlingsresistente Nutzpflanzen zu entwickeln.

Neben den ABC-Toxinen haben die Erreger der Pest zusätzlich ein anderes Transportsystem entwickelt, das auch bei den Erregern der Bakterienruhr und Typhus vorkommt. Dieses als Typ-III-Sekretionssystem bezeichnete Sekretionssystem sieht zwar ebenfalls aus wie eine Spritze, allerdings ist der Spritzenkörper in die Bakterienmembran eingebettet und die Spritzennadel weist nach außen. Mit Hilfe dieser Nano-Spritzen können die Bakterien Stoffe direkt in die Wirtszelle injizieren.

Ansprechpartner

Dr. Stefan Raunser,
Max-Planck-Institut für molekulare Physiologie, Dortmund
Telefon: +49 231 133-2356
E-Mail: stefan.raunser@­mpi-dortmund.mpg.de
Dr. Peter Herter,
Max-Planck-Institut für molekulare Physiologie, Dortmund
Telefon: +49 231 133-2500
Fax: +49 231 133-2599
E-Mail: peter.herter@­mpi-dortmund.mpg.de

Originalpublikation
Christos Gatsogiannis, Alexander E Lang, Dominic Meusch, Vanda Pfaumann, Oliver Hofnagel, Roland Benz, Klaus Aktories, Stefan Raunser
Photorhabdus luminescens toxins use a novel syringe-like injection mechanism for cell entry

Nature, 20.März 2013, DOI: 10.1038/nature11987

Dr. Stefan Raunser | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7027982/bakterien-spritze

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften