Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien- und Virendetektor alarmbereit am Einsatzort

15.01.2013
Forscher zeigen: Ein ausgereiftes Transportsystem hilft Immunzellen, Infektionen schnell zu erkennen
„Gefahr!“, signalisiert der molekulare Detektor mit dem Namen TLR9, wenn er bakterielle oder virale Erbinformation, die DNA, erkennt. Dann leitet das Immunsystem die Bekämpfung der Infektion ein. Dieser erste Schutz funktioniert schnell, weil er grundlegende Strukturen der Eindringlinge erkennt – in diesem Fall die DNA der Bakterien oder Viren. Forscher des Helmholtz-Zentrums für Infektionsforschung (HZI) haben gezeigt, dass TLR9 fremde DNA nicht nur rasch erkennt, sondern bereits einsatzbereit dort wartet, wo er auf sie treffen wird.

Durch Mechanismen wie diesen gewinnen wir wertvolle Zeit, bevor der zwar effektivere, aber langsamere Teil des Immunsystems, das erworbene Immunsystem, angeschaltet wird. Was notwendig ist, damit TLR9 seiner Aufgabe in verschiedenen Immunzellen nachgehen und Infektionen aufspüren kann, haben Wissenschaftler des HZI gemeinsam mit Kollegen aus Deutschland, den USA und Südkorea untersucht. Ihre Ergebnisse veröffentlichten die Forscher in der Fachzeitschrift „The Journal of Immunology“, die diese Arbeit zu den besten zehn Prozent aller in der Zeitschrift veröffentlichten Beiträge zählt.

Die Wissenschaftler versprechen sich Erkenntnisse für therapeutische Zwecke: „TLR9 könnte uns neben seiner klassischen Aufgabe auch bei der Vorbeugung oder der Therapie von Krankheiten helfen. Eine Möglichkeit, die derzeit in klinischen Studien geprüft wird, ist Impfungen DNA zuzusetzen, um TLR9 anzuschalten und so das Immunsystem stärker zu stimulieren“, erklärt Prof. Melanie Brinkmann, die am HZI die Forschungsgruppe „Virale Immunmodulation“ leitet. In anderen Fällen erscheint es sinnvoll, dieses Molekül zu hemmen - nämlich dann, wenn es irrtümlich körpereigene DNA erkennt und dadurch Autoimmunerkrankungen verursacht. „Um das Potential von diesem und ähnlichen Molekülen zu erfassen, müssen wir besser verstehen, wie TLR9 in Immunzellen funktioniert“, so Brinkmann. Insbesondere interessiert die Forscher, wie das Molekül von dem Ort in der Zelle, wo es hergestellt wird, in die sogenannten Endolysosomen gelangt. In diesen Kügelchen trifft es schließlich auf die DNA von Bakterien oder Viren.
Um die Bewegungen von TLR9 in der Zelle zu verfolgen, entwarfen die Wissenschaftler ein Modell, in dem Mäuse eine farbig markierte Version des Moleküls herstellen. Der Blick durchs Mikroskop zeigte, wo sich TLR9 in den unterschiedlichen Immunzellen befindet und offenbarte, warum es so schnell reagieren kann: Noch bevor überhaupt eine Bakterien- oder Vireninfektion stattfindet, wandert der Detektor bereits in die Endolysosomen und „wartet“ dort auf mögliche Eindringlinge. Indem TLR9 gleich an diesen Ort geschickt wird, gewährleistet die Zelle eine schnelle Entdeckung der Krankheitserreger.

Um wirklich einsatzbereit zu sein, muss erst noch ein Stück des Proteins abgeschnitten werden – das bewerkstelligen „molekulare Scheren“, die die Forscher ebenfalls identifiziert haben. Sowohl der Transport in die Endolysosomen als auch das Abschneiden eines Proteinschnipsels hängen von einem weiteren Protein namens UNC93B1 ab. „Wir haben also mehrere mögliche Stellschrauben gefunden, die wichtig sind, damit TLR9 eingedrungene Bakterien und Viren erkennen und Alarm schlagen kann“, fasst die ebenfalls an der Studie beteiligte HZI-Wissenschaftlerin Dr. Margit Oelkers zusammen. Die Forscher haben den Transport von TLR9 in verschiedenen Immunzelltypen untersucht und festgestellt, dass dieser Prozess von Zelltyp zu Zelltyp etwas unterschiedlich abläuft. „Diese Ergebnisse helfen uns, besser zu verstehen, wie TLR9 funktioniert. Das ist entscheidend, um bei Problemen therapeutisch aktiv werden zu können“, so Brinkmann.

Originalpublikation:
Ana M. Avalos, Oktay Kirak, J. Margit Oelkers, Marina C. Pils, You-Me Kim, Matthias Ottinger, Rudolf Jaenisch, Hidde L. Ploegh und Melanie M. Brinkmann
Cell-Specific TLR9 Trafficking in Primary APCs of Transgenic TLR9-GFP Mice
The Journal of Immunology 2013 190:695-702

In unseren Körper eingedrungene Krankheitserreger werden im Idealfall von unserem Immunsystem erkannt und beseitigt. Mikroorganismen und Viren haben allerdings Strategien entwickelt, der Immunantwort zu entgehen. Die Arbeitsgruppe „Virale Immunmodulation“ untersucht insbesondere, wie Herpesviren dabei vorgehen.

Das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern.

Diese Immunzelle stellt TLR9 her, das grün leuchtet, wenn es mit Laserlicht bestrahlt wird. Das Molekül befindet sich am Rand von kleinen Kügelchen, in denen es auf die DNA von Krankheitserregern treffen wird.

HZI/Oelkers

http://www.helmholtz-hzi.de

Dr. Birgit Manno | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-hzi.de
http://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/bakterien_und_virendetektor_alarmbereit_am_einsatzort/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie