Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien- und Virendetektor alarmbereit am Einsatzort

15.01.2013
Forscher zeigen: Ein ausgereiftes Transportsystem hilft Immunzellen, Infektionen schnell zu erkennen
„Gefahr!“, signalisiert der molekulare Detektor mit dem Namen TLR9, wenn er bakterielle oder virale Erbinformation, die DNA, erkennt. Dann leitet das Immunsystem die Bekämpfung der Infektion ein. Dieser erste Schutz funktioniert schnell, weil er grundlegende Strukturen der Eindringlinge erkennt – in diesem Fall die DNA der Bakterien oder Viren. Forscher des Helmholtz-Zentrums für Infektionsforschung (HZI) haben gezeigt, dass TLR9 fremde DNA nicht nur rasch erkennt, sondern bereits einsatzbereit dort wartet, wo er auf sie treffen wird.

Durch Mechanismen wie diesen gewinnen wir wertvolle Zeit, bevor der zwar effektivere, aber langsamere Teil des Immunsystems, das erworbene Immunsystem, angeschaltet wird. Was notwendig ist, damit TLR9 seiner Aufgabe in verschiedenen Immunzellen nachgehen und Infektionen aufspüren kann, haben Wissenschaftler des HZI gemeinsam mit Kollegen aus Deutschland, den USA und Südkorea untersucht. Ihre Ergebnisse veröffentlichten die Forscher in der Fachzeitschrift „The Journal of Immunology“, die diese Arbeit zu den besten zehn Prozent aller in der Zeitschrift veröffentlichten Beiträge zählt.

Die Wissenschaftler versprechen sich Erkenntnisse für therapeutische Zwecke: „TLR9 könnte uns neben seiner klassischen Aufgabe auch bei der Vorbeugung oder der Therapie von Krankheiten helfen. Eine Möglichkeit, die derzeit in klinischen Studien geprüft wird, ist Impfungen DNA zuzusetzen, um TLR9 anzuschalten und so das Immunsystem stärker zu stimulieren“, erklärt Prof. Melanie Brinkmann, die am HZI die Forschungsgruppe „Virale Immunmodulation“ leitet. In anderen Fällen erscheint es sinnvoll, dieses Molekül zu hemmen - nämlich dann, wenn es irrtümlich körpereigene DNA erkennt und dadurch Autoimmunerkrankungen verursacht. „Um das Potential von diesem und ähnlichen Molekülen zu erfassen, müssen wir besser verstehen, wie TLR9 in Immunzellen funktioniert“, so Brinkmann. Insbesondere interessiert die Forscher, wie das Molekül von dem Ort in der Zelle, wo es hergestellt wird, in die sogenannten Endolysosomen gelangt. In diesen Kügelchen trifft es schließlich auf die DNA von Bakterien oder Viren.
Um die Bewegungen von TLR9 in der Zelle zu verfolgen, entwarfen die Wissenschaftler ein Modell, in dem Mäuse eine farbig markierte Version des Moleküls herstellen. Der Blick durchs Mikroskop zeigte, wo sich TLR9 in den unterschiedlichen Immunzellen befindet und offenbarte, warum es so schnell reagieren kann: Noch bevor überhaupt eine Bakterien- oder Vireninfektion stattfindet, wandert der Detektor bereits in die Endolysosomen und „wartet“ dort auf mögliche Eindringlinge. Indem TLR9 gleich an diesen Ort geschickt wird, gewährleistet die Zelle eine schnelle Entdeckung der Krankheitserreger.

Um wirklich einsatzbereit zu sein, muss erst noch ein Stück des Proteins abgeschnitten werden – das bewerkstelligen „molekulare Scheren“, die die Forscher ebenfalls identifiziert haben. Sowohl der Transport in die Endolysosomen als auch das Abschneiden eines Proteinschnipsels hängen von einem weiteren Protein namens UNC93B1 ab. „Wir haben also mehrere mögliche Stellschrauben gefunden, die wichtig sind, damit TLR9 eingedrungene Bakterien und Viren erkennen und Alarm schlagen kann“, fasst die ebenfalls an der Studie beteiligte HZI-Wissenschaftlerin Dr. Margit Oelkers zusammen. Die Forscher haben den Transport von TLR9 in verschiedenen Immunzelltypen untersucht und festgestellt, dass dieser Prozess von Zelltyp zu Zelltyp etwas unterschiedlich abläuft. „Diese Ergebnisse helfen uns, besser zu verstehen, wie TLR9 funktioniert. Das ist entscheidend, um bei Problemen therapeutisch aktiv werden zu können“, so Brinkmann.

Originalpublikation:
Ana M. Avalos, Oktay Kirak, J. Margit Oelkers, Marina C. Pils, You-Me Kim, Matthias Ottinger, Rudolf Jaenisch, Hidde L. Ploegh und Melanie M. Brinkmann
Cell-Specific TLR9 Trafficking in Primary APCs of Transgenic TLR9-GFP Mice
The Journal of Immunology 2013 190:695-702

In unseren Körper eingedrungene Krankheitserreger werden im Idealfall von unserem Immunsystem erkannt und beseitigt. Mikroorganismen und Viren haben allerdings Strategien entwickelt, der Immunantwort zu entgehen. Die Arbeitsgruppe „Virale Immunmodulation“ untersucht insbesondere, wie Herpesviren dabei vorgehen.

Das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern.

Diese Immunzelle stellt TLR9 her, das grün leuchtet, wenn es mit Laserlicht bestrahlt wird. Das Molekül befindet sich am Rand von kleinen Kügelchen, in denen es auf die DNA von Krankheitserregern treffen wird.

HZI/Oelkers

http://www.helmholtz-hzi.de

Dr. Birgit Manno | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-hzi.de
http://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/bakterien_und_virendetektor_alarmbereit_am_einsatzort/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien aus dem Blut «ziehen»
07.12.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Sensortechnik für E-Auto-Batterien

08.12.2016 | Energie und Elektrotechnik

Entlastung im Güterfernverkehr

08.12.2016 | Verkehr Logistik

Rätsel um Mott-Isolatoren gelöst

08.12.2016 | Physik Astronomie