Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien- und Virendetektor alarmbereit am Einsatzort

15.01.2013
Forscher zeigen: Ein ausgereiftes Transportsystem hilft Immunzellen, Infektionen schnell zu erkennen
„Gefahr!“, signalisiert der molekulare Detektor mit dem Namen TLR9, wenn er bakterielle oder virale Erbinformation, die DNA, erkennt. Dann leitet das Immunsystem die Bekämpfung der Infektion ein. Dieser erste Schutz funktioniert schnell, weil er grundlegende Strukturen der Eindringlinge erkennt – in diesem Fall die DNA der Bakterien oder Viren. Forscher des Helmholtz-Zentrums für Infektionsforschung (HZI) haben gezeigt, dass TLR9 fremde DNA nicht nur rasch erkennt, sondern bereits einsatzbereit dort wartet, wo er auf sie treffen wird.

Durch Mechanismen wie diesen gewinnen wir wertvolle Zeit, bevor der zwar effektivere, aber langsamere Teil des Immunsystems, das erworbene Immunsystem, angeschaltet wird. Was notwendig ist, damit TLR9 seiner Aufgabe in verschiedenen Immunzellen nachgehen und Infektionen aufspüren kann, haben Wissenschaftler des HZI gemeinsam mit Kollegen aus Deutschland, den USA und Südkorea untersucht. Ihre Ergebnisse veröffentlichten die Forscher in der Fachzeitschrift „The Journal of Immunology“, die diese Arbeit zu den besten zehn Prozent aller in der Zeitschrift veröffentlichten Beiträge zählt.

Die Wissenschaftler versprechen sich Erkenntnisse für therapeutische Zwecke: „TLR9 könnte uns neben seiner klassischen Aufgabe auch bei der Vorbeugung oder der Therapie von Krankheiten helfen. Eine Möglichkeit, die derzeit in klinischen Studien geprüft wird, ist Impfungen DNA zuzusetzen, um TLR9 anzuschalten und so das Immunsystem stärker zu stimulieren“, erklärt Prof. Melanie Brinkmann, die am HZI die Forschungsgruppe „Virale Immunmodulation“ leitet. In anderen Fällen erscheint es sinnvoll, dieses Molekül zu hemmen - nämlich dann, wenn es irrtümlich körpereigene DNA erkennt und dadurch Autoimmunerkrankungen verursacht. „Um das Potential von diesem und ähnlichen Molekülen zu erfassen, müssen wir besser verstehen, wie TLR9 in Immunzellen funktioniert“, so Brinkmann. Insbesondere interessiert die Forscher, wie das Molekül von dem Ort in der Zelle, wo es hergestellt wird, in die sogenannten Endolysosomen gelangt. In diesen Kügelchen trifft es schließlich auf die DNA von Bakterien oder Viren.
Um die Bewegungen von TLR9 in der Zelle zu verfolgen, entwarfen die Wissenschaftler ein Modell, in dem Mäuse eine farbig markierte Version des Moleküls herstellen. Der Blick durchs Mikroskop zeigte, wo sich TLR9 in den unterschiedlichen Immunzellen befindet und offenbarte, warum es so schnell reagieren kann: Noch bevor überhaupt eine Bakterien- oder Vireninfektion stattfindet, wandert der Detektor bereits in die Endolysosomen und „wartet“ dort auf mögliche Eindringlinge. Indem TLR9 gleich an diesen Ort geschickt wird, gewährleistet die Zelle eine schnelle Entdeckung der Krankheitserreger.

Um wirklich einsatzbereit zu sein, muss erst noch ein Stück des Proteins abgeschnitten werden – das bewerkstelligen „molekulare Scheren“, die die Forscher ebenfalls identifiziert haben. Sowohl der Transport in die Endolysosomen als auch das Abschneiden eines Proteinschnipsels hängen von einem weiteren Protein namens UNC93B1 ab. „Wir haben also mehrere mögliche Stellschrauben gefunden, die wichtig sind, damit TLR9 eingedrungene Bakterien und Viren erkennen und Alarm schlagen kann“, fasst die ebenfalls an der Studie beteiligte HZI-Wissenschaftlerin Dr. Margit Oelkers zusammen. Die Forscher haben den Transport von TLR9 in verschiedenen Immunzelltypen untersucht und festgestellt, dass dieser Prozess von Zelltyp zu Zelltyp etwas unterschiedlich abläuft. „Diese Ergebnisse helfen uns, besser zu verstehen, wie TLR9 funktioniert. Das ist entscheidend, um bei Problemen therapeutisch aktiv werden zu können“, so Brinkmann.

Originalpublikation:
Ana M. Avalos, Oktay Kirak, J. Margit Oelkers, Marina C. Pils, You-Me Kim, Matthias Ottinger, Rudolf Jaenisch, Hidde L. Ploegh und Melanie M. Brinkmann
Cell-Specific TLR9 Trafficking in Primary APCs of Transgenic TLR9-GFP Mice
The Journal of Immunology 2013 190:695-702

In unseren Körper eingedrungene Krankheitserreger werden im Idealfall von unserem Immunsystem erkannt und beseitigt. Mikroorganismen und Viren haben allerdings Strategien entwickelt, der Immunantwort zu entgehen. Die Arbeitsgruppe „Virale Immunmodulation“ untersucht insbesondere, wie Herpesviren dabei vorgehen.

Das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern.

Diese Immunzelle stellt TLR9 her, das grün leuchtet, wenn es mit Laserlicht bestrahlt wird. Das Molekül befindet sich am Rand von kleinen Kügelchen, in denen es auf die DNA von Krankheitserregern treffen wird.

HZI/Oelkers

http://www.helmholtz-hzi.de

Dr. Birgit Manno | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-hzi.de
http://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/bakterien_und_virendetektor_alarmbereit_am_einsatzort/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie