Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien befreien sich mit molekularer «Harpune»

16.06.2017

Eine Vielzahl von Bakterien ist mit molekularen «Nano-Harpunen» ausgestattet. Damit bekämpfen sie unliebsame Konkurrenten oder manipulieren ihre Wirtszellen. Der Erreger der Tularämie, einer hochansteckenden Infektionskrankheit, verwendet hingegen seine Waffe, um sich aus der Gefangenschaft der Abwehrzellen zu retten. Wie dies den Bakterien gelingt, darüber berichten Forscher vom Biozentrum der Universität Basel in der aktuellen Ausgabe von «Nature Communications».

Die Tularämie ist eine Seuche, die zumeist unter Hasen und Nagern grassiert. Aber auch der Mensch kann sich mit der Krankheit anstecken. Der Auslöser der lebensbedrohlichen Krankheit ist das Bakterium Francisella tularensis. Die Infektionsbiologen um Prof. Marek Basler und Prof. Petr Broz vom Biozentrum der Universität Basel zeigen nun am Beispiel einer für den Menschen harmlosen Francisella-Unterart, wie sich diese Bakterien mithilfe einer Nano-Harpune aus Verdauungsbläschen im Inneren von Abwehrzellen befreien können.


Mit Francisella novicida (pink) infizierte Makrophage. Das Bakterium baut dort seine Nano-Harpune zusammen (grün).

Universität Basel, Biozentrum

Tularämie: eine lebensbedrohliche Infektionskrankheit

Diese Infektionskrankheit kann durch Parasiten wie Zecken und Flöhe oder durch Tröpfcheninfektion vom Tier auf den Menschen übertragen werden. Ohne medikamentöse Behandlung kann die Krankheit sogar tödlich verlaufen. «Die Sterblichkeitsrate kann bis zu dreissig Prozent betragen», erklärt Broz. «Bereits ein Dutzend eingeatmeter Francisella-Bakterien reichen aus, um sich anzustecken.» Da der Erreger sehr infektiös ist und sich schnell über die Luft verbreitet, wurde er in das Arsenal der biologischen Kampfstoffe aufgenommen.

Infektionserreger mit eigener «Waffe»

Das Bakterium Francisella verfügt aber auch selbst über eine effiziente «Waffe» – das sogenannte Typ-6-Sekretionssystem (T6SS), welches wie eine Harpune funktioniert. Diese benötigt Francisella, um sich aus der «Gefangenschaft» der Fresszellen zu befreien. Denn die Abwehrzellen «fressen» in den Körper eingedrungene Erreger auf, schliessen sie im Zellinneren in kleinen Bläschen ein und verdauen sie. Mithilfe des T6SS kann sich Francisella jedoch aus diesen Verdauungsvesikeln befreien. So gelangt es schliesslich ins Zellplasma, den Ort, an dem es sich schnell vermehren kann.

Molekulare Harpune zur Befreiung aus «Gefangenschaft»

Die beiden Forschungsgruppen untersuchten nun, wie das T6SS bei Francisella aufgebaut ist und wie es funktioniert. Dabei stellte sich heraus, dass der Erreger die Bestandteile seiner Waffe recycelt. «Nach dem Abfeuern der Harpune wird sie sofort in ihre Einzelteile zerlegt. Diese verwendet das Bakterium sofort für den Bau einer neuen Harpune», erklärt Basler. «Mit ihrer Waffe stechen die Bakterien durch die Membran des Vesikels, in das sie eingeschlossen sind, und injizieren Giftproteine in das Innere der Immunzelle.» Diese bislang noch nicht beschriebenen Proteine zerstören anschliessend die Vesikelmembran. So können sich die Bakterien schliesslich selbst aus ihrer «Gefangenschaft» befreien und sich vor einer Verdauung retten.

Besitzen sie diese Proteine nicht, gibt es für sie kein Entkommen. Das T6SS sowie die Giftproteine sind wichtige Virulenzfaktoren, denn sie sind entscheidend für den Erfolg des Bakteriums bei einer Infektion. Sind die Erreger erst einmal ins Zellplasma entkommen, fängt der eigentliche Kampf erst an, da sie sich nun gegen die angeborene Immunabwehr des Wirtes behaupten müssen.

Originalbeitrag

Maj Brodmann, Roland F. Dreier, Petr Broz and Marek Basler
Francisella requires dynamic Type VI secretion system and ClpB to deliver effectors for phagosomal escape
Nature Communications (2017), doi: 10.1038/ncomms15853

Weitere Auskünfte

Prof. Dr. Marek Basler, Universität Basel, Biozentrum, Tel. +41 61 207 21 10, E-Mail: Mail: marek.basler@unibas.ch
Dr. Katrin Bühler, Universität Basel, Biozentrum, Kommunikation, Tel. +41 61 207 09 74, E-Mail: katrin.buehler@unibas.ch

Weitere Informationen:

https://www.unibas.ch/de/Aktuell/News/Uni-Research/Bakterien-befreien-sich-mit-m...

Olivia Poisson | Universität Basel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie