Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien und Algen sind Bio-Starter für Rohstoff-Ablagerungen in der Tiefsee

19.05.2009
Mikroorganismen liefern Initialzündung für die Entstehung von Manganknollen und Mangankrusten - Vorbild für zukünftige Gewinnung von Rohstoffen

Auf dem Meeresboden liegen Rohstoffe, die in Zukunft von großer Wichtigkeit sein könnten: Mangan, Eisen, aber auch die selteneren und wertvolleren Elemente Kobalt, Kupfer, Zink und Nickel sind in Tiefseeknollen und Tiefseekrusten reichlich vorhanden.

Dass sich die Stoffe aus dem Meerwasser und dem Sediment anreichern konnten, ist einem als "Biomineralisation" bezeichneten Prozess zu verdanken.

Kleinstlebewesen wie Bakterien und Algen sind am Aufbau der Knollen und Krusten beteiligt und liefern, so zeigen neue Forschungen am Institut für Physiologische Chemie und Pathobiochemie der Johannes Gutenberg-Universität Mainz, die Initialzündung für die Ansammlung der Metalle. Die neuen Erkenntnisse könnten nach Einschätzung der Wissenschaftler dazu beitragen, dass eine umweltfreundliche und nachhaltige Nutzung der wertvollen Meeresschätze erfolgt.

Der Wettlauf um die Ressourcen auf dem Meeresboden hat schon begonnen, die Industrieländer haben ihre Claims abgesteckt und sich die Regionen mit hohen Rohstoffvorkommen gesichert. "Das birgt internationalen Konfliktstoff", da ist sich Univ.-Prof. Dr. Werner Müller von der Universität Mainz sicher.

Weiß man aber erst einmal, wie die Tiefseeknollen und Tiefseekrusten genau entstanden sind, könnten vielleicht in nicht allzu ferner Zukunft Mikroorganismen gezüchtet werden, um ganz gezielt wichtige Rohstoffe "anzubauen". Müller erforscht seit über 30 Jahren die Unterwasserwelt und gilt als Pionier der Schwammforschung in Deutschland. Aber nicht nur Schwämme bieten nach Auffassung des Mediziners einen nahezu unerschöpflichen Fundus - angefangen von bioaktiven Substanzen für die Medizin bis zu Silikaten für die Lichtleitung -, sondern auch Bakterien und Algen sind wahre Zauberkünstler.

Manganknollen entstehen auf dem Meeresboden in 4000 bis 5000 Meter Tiefe. In über 10 Millionen Jahren haben sich hier schätzungsweise 300 Milliarden Tonnen Mangan in Knollen angesammelt. "Das ist recht erstaunlich, wenn man bedenkt, dass die Konzentration von Mangan im Meereswasser verschwindend gering ist", so Müller.

Zusammen mit dem Mangan finden sich in den kartoffelähnlichen Knollen Eisen und Buntmetalle, die sich in Schichten abgelagert haben. Ist erst einmal ein kleines Samenkorn vorhanden, reichern sich immer neue Metallionen an der Außenschicht an. Wie es zur Initialzündung kommt, hat Müller nun in Kooperation mit chinesischen Wissenschaftlern aufgedeckt. Als Bio-Keime fungieren demnach Bakterien, an deren Außenwand eine zusätzliche Proteinschicht sitzt, der sogenannte S-Layer. "Die äußerste Schicht des S-Layers ist eine ideale organische Matrix, die nicht nur die Mikroorganismen gegen schädigende Umwelteinflüsse schützt, sondern auch die Ablagerung von Mineralien erlaubt."

Müller und seine Kooperationspartner haben in Manganknollen ganze Ketten aus Bakterien mit S-Layern gefunden, an denen die Synthese der Biomaterialien ihren Anfang genommen hat. "Ist aber erst einmal die erste Schicht vorhanden, kommt es zu Autokatalyse, das Material vervollständigt sich selbst."

Bei Tiefseekrusten ist der Bio-Keim nicht ein Bakterium, sondern eine kleine, einzellige Alge. Die Tiefseekrusten, auch Mangankrusten oder Kobaltkrusten genannt, sind in 800 bis 2400 Meter Tiefe zu finden und enthalten ebenfalls bedeutende Rohstoffvorkommen. Sie verdanken ihre Entstehung den Coccolithophoriden, gepanzerten Algen, die rundherum mit einer Kalkschicht als Schutzschild bedeckt sind. Diese Algen leben in einer Tiefe von 100 Metern. Sterben sie ab, dann fällt ihr Schutzpanzer in tiefere Schichten, wo es durch chemische Umwandlung zur Bindung von Mangan kommt.

"Wir können die Natur als ein Modell nehmen, um künftig vielleicht mit Hilfe von Algen und Bakterien Mangan und andere Metalle in einer künstlichen Umgebung aus Meerwasser zu gewinnen", erklärt Müller. Dies könnte Verteilungskonflikte entschärfen und zu einer nachhaltigen Produktion beitragen, ohne die Tiefsee zu schädigen.

Originalveröffentlichung:
Xiaohong Wang, Werner E.G. Müller
Marine biominerals: perspectives and challenges for polymetallic nodules and crusts
Trends in Biotechnology, 30. April 2009
doi:10.1016/j.tibtech.2009.03.004
Kontakt und Informationen.
Univ.-Prof. Dr. Werner E.G. Müller
Institut für Physiologische Chemie und Pathobiochemie
Angewandte Molekularbiologie
Johannes Gutenberg-Universität Mainz
Tel. +49 6131 39-25910
Fax +49 6131 39-22524
E-Mail: wmueller@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de/presse/29674.php
http://www.cell.com/trends/biotechnology/abstract/S0167-7799(09)00075-4

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie