Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Argonautenproteine in den Prozess der Genregulation eingreifen

14.11.2013
Heidelberger Wissenschaftler identifizieren Proteinmotive, die die Stilllegung von Genen mitbestimmen

Die Funktion bestimmter Proteine im Prozess der Genregulation, der sogenannten Argonautenproteine (Ago), haben Biowissenschaftler der Universität Heidelberg untersucht.


Das Puzzle symbolisiert die vier prinzipiellen Domänen, aus denen humane Argonautenproteine aufgebaut sind. Bildnachweis: Dirk Grimm

Sie sind der Frage nachgegangen, warum nur das humane Ago2, nicht aber das eng verwandte Ago3 beim Menschen in der Lage ist, Gene zielgerichtet und direkt abzuschalten. Mit Hilfe einer neuen Untersuchungsmethode ist es den Forschern um Dr. Dirk Grimm gelungen, erstmals zwei „Motive“ dieses Proteins zu identifizieren, deren korrekte Kombination mit einem bereits bekannten Proteinbereich die Fähigkeit von Ago2 zur Gen-Stilllegung ermöglicht.

Von den Forschungsergebnissen erhoffen sich die Wissenschaftler neue Möglichkeiten in der biologischen und medizinischen Grundlagenforschung zum künstlich erzeugten Abschalten von Genen.

Mit ihrer speziellen Untersuchungsmethode, die die Bezeichnung „gerichtete Protein-Evolution“ trägt, konnten die Heidelberger Wissenschaftler eine große Bibliothek von „Mischwesen“ aus humanem Ago2 und seinem nahen Verwandten Ago3 generieren. Aus diesen Chimären wurden einzelne Proteine mit einem charakteristischen Erscheinungsbild – dem Phänotyp – von Ago2 isoliert. Eine vergleichende bioinformatische Analyse der Kandidaten mit dem stärksten Ago2-Phänotyp erbrachte ein „überraschendes Ergebnis“, wie Dr. Grimm betont. Die Forscher, die dem Exzellenzcluster „CellNetworks“ der Universität Heidelberg angehören, fanden wiederkehrend eine Anreicherung von zwei kurzen Motiven in einem speziellen Bereich des Argonautenproteins, dem N-Terminus am Ende des Proteins.

„Dieses Resultat war unerwartet, weil nach gängiger Lehrmeinung ein ganz anderer, bereits bekannter Proteinbereich mit der Bezeichnung PIWI-Domäne allein für die genregulierenden Eigenschaften von Ago2 verantwortlich ist“, sagt Dr. Grimm. „Wir konnten jedoch zeigen, dass erst die korrekte Kombination dieser drei Proteinbestandteile Ago2 die Fähigkeit verleiht, auf spezielle Weise das Abschalten von Genen auszulösen.“ Die Gen-Stillegung beruht dabei auf der sogenannten RNA-Interferenz: Das auch als „slicer“ bezeichnete Ago2 schneidet die Boten-RNA, die die in der DNA gespeicherte Information transportiert und in Proteine übersetzt.

Nach den Worten von Erstautorin Nina Schürmann ermöglichen die Ergebnisse dieser Forschungsarbeiten ein neues Verständnis der Argonautenproteine. Sie zeigen, dass spezielle Ago-Funktionen nicht von isolierten Proteindomänen, sondern durch ein komplexes Wechselspiel mehrerer aktivierender oder hemmender Bereiche bestimmt werden. Für die Forscher ergibt sich daraus die Hoffnung, in Zukunft komplett neue Proteineigenschaften erzeugen und damit möglicherweise auch die RNA-Interferenzprozesse weiter verbessern zu können, wie Dr. Grimm betont. Um die Forschung weiter voranzutreiben, haben die Heidelberger Wissenschaftler eine Bibliothek von Chimären der insgesamt vier humanen Argonautenproteine generiert und zudem eine Analysesoftware entwickelt, die auch von anderen Anwendern eingesetzt werden kann. In Zusammenarbeit mit Prof. Dr. Robert Russell und Dr. Leonardo Trabuco, die ebenfalls am Exzellenzcluster „CellNetworks“ forschen, konnte erstmals auch eine Struktur des humanen Ago3 modelliert werden.

Dirk Grimm leitet am Exzellenzcluster „CellNetworks“ die Nachwuchsgruppe „Virus-Host Interactions“, die im BioQuant-Zentrum der Universität Heidelberg angesiedelt ist. Die Gruppe gehört am Universitätsklinikum Heidelberg dem Department für Infektiologie unter der Leitung von Prof. Dr. Hans-Georg Kräusslich an und wird durch die Chica und Heinz Schaller Stiftung (CHS) unterstützt. Die Forschungsergebnisse wurden in der Fachzeitschrift „Nature Structural & Molecular Biology“ veröffentlicht.

Informationen im Internet:
Dr. Dirk Grimm: http://www.cellnetworks.uni-hd.de/13843/personal_data
Exzellenzcluster „CellNetworks“: http://www.cellnetworks.uni-hd.de
BioQuant-Zentrum: http://www.bioquant.uni-heidelberg.de
Department für Infektiologie: http://www.klinikum.uni-heidelberg.de/UEberblick.1208.0.html
Originalpublikation:
N. Schürmann, L.G. Trabuco, Ch. Bender, R.B. Russell & D. Grimm: Molecular dissection of human Argonaute proteins by DNA shuffling, Nature Structural & Molecular Biology 20, 818-826 (2013), doi: 10.1038/nsmb.2607
Kontakt:
Dr. Dirk Grimm
Exzellenzcluster „CellNetworks“
BioQuant-Zentrum
Telefon (06221) 54-51339
dirk.grimm@bioquant.uni-heidelberg.de
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | EurekAlert!
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie