Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Arbeitsteilung im Reagenzglas

02.12.2013
Bakterien wachsen schneller, wenn sie sich gegenseitig Nährstoffe zur Verfügung stellen.

Arbeitsteilung ist effektiver als sich ohne fremde Hilfe durchs Leben zu kämpfen – das gilt auch für Kleinstlebewesen.


Arbeitsteilende Bakterien (linke Kolonie) wachsen schneller als autarke Zellen (rechte Kolonie), die alle Aminosäuren selbst herstellen können.

S. Pande / MPI für chemische Ökologie

Dies hat die Forschungsgruppe Experimentelle Ökologie und Evolution vom Max-Planck-Institut für chemische Ökologie, Jena, zusammen mit Kollegen der Friedrich-Schiller-Universität mit auf Mikroben basierenden Modellversuchen herausgefunden.

Die Wissenschaftler experimentierten mit Bakterien, die wegen des Ausfalls der Produktion einer bestimmten Aminosäure auf einen Partner angewiesen waren, der ihnen den fehlenden Nährstoff zur Verfügung stellte. Stämme, die sich bei der Biosynthese jeweils einer Aminosäure wechselseitig ergänzten, zeigten eine rund 20%ige Steigerung ihrer Fitness verglichen mit einem Stamm, der zwar ohne fremde Hilfe auskam, dafür aber ohne Partner lebte. Dieses Ergebnis erklärt, warum Kooperation als Erfolgsmodell in der Natur so weit verbreitet ist. (The ISME Journal, 28. November 2013, DOI: 10.1038/ismej.2013.211)

Ökologie und Evolution: Nahe Verwandte

Jede Lebensform auf unserem Planeten muss sich an ihre Umweltbedingungen optimal anpassen. Neben Klimabedingungen und Nahrungsangebot gehören dazu insbesondere auch andere Lebewesen, die an einem Standort vorkommen − mit diesen gilt es, auszukommen. Im Laufe der Evolution passen sich die Arten kontinuierlich an ihre jeweiligen Umweltbedingungen an, wodurch sich auch ihre individuelle Gen-Ausstattung entsprechend ändert. So entstanden an den Polen kälteresistente und in den Wüsten hitzeresistente Arten. Auch Stoffwechselregulation und Nahrungsverwertung unterliegen der Evolution − hier lohnt sich ein Blick in die Welt der Mikroben.

Mikrobielle Lebensgemeinschaften

„Egal, wo man hinschaut: Überall gibt es mikrobielle Lebensgemeinschaften, die an ein und demselben Standort miteinander leben“, so Christian Kost, Leiter der Forschungsgruppe „Experimentelle Ökologie und Evolution“ am Max-Planck-Institut für chemische Ökologie. Mikroben leben oft in Symbiose mit höheren Organismen, aber auch untereinander kooperieren sie, um die Ressourcen eines Standortes optimal auszunutzen. Der Blick in die Genome kooperierender Bakterienarten zeigt interessanterweise, dass viele von Ihnen gar nicht mehr in der Lage sind, sämtliche lebensnotwendigen Stoffwechselfunktionen für sich allein zu erfüllen. Stattdessen verlassen sich diese auf ihre jeweiligen Partner. Hierbei stellt die Umwelt, also andere Lebewesen, Nährstoffe zur Verfügung, die sie nicht mehr selbst produzieren können. Dies bedeutet aber eine riskante Abhängigkeit: Geht ein Partner verloren, stirbt auch der andere. Können solche Zweckgemeinschaften tatsächlich ein Merkmal sein, das „positiv selektiert“, also in einer Population von Mikroorganismen über längere Zeit erhalten bleibt? Passt diese Annahme zu Darwins Theorie des Survival of the fittest? Wenn ja, dann müsste die Fitness der kooperierenden Partner mindestens genauso gut, wenn nicht sogar besser sein als die von Mikroben, die ohne Partner auskommen müssen.

Synthetische Ökologie: Nachstellen ökologischer Parameter im Reagenzglas

Eine natürlich entstandene Lebensgemeinschaft aus der Natur ins Labor zu holen, um dort solche Kooperationen zu studieren, ist oft äußerst schwierig. Die in der Natur vorherrschenden Umweltbedingungen können im Labor oft nur zum Teil nachgestellt werden. Die Wissenschaftler bedienten sich daher eines synthetischen Modells: Bakterien der Art Escherichia coli wurden genetisch derart verändert, dass ein Stamm eine bestimmte Aminosäure, beispielsweise Tryptophan, nicht mehr selbst herstellen konnte, zusätzlich aber alle anderen Aminosäuren in hoher Konzentration produzierte. Wächst dieser Stamm nun gemeinsam mit einem anderen Stamm, der beispielsweise Arginin nicht mehr selbst produzieren kann, können sich die beiden gegenseitig ernähren. Erstaunlicherweise zeigte sich bei solchen Ko-Kulturexperimenten, dass sich die Teilungsrate dieser Zellen um rund 20% steigerte, verglichen mit dem ursprünglichen, genetisch unveränderten Stamm, der alle Aminosäuren selbst produzieren konnte. Der Mangel, eine essenzielle Aminosäure nicht mehr selbst herstellen zu könnten, wirkte sich also bei Anwesenheit eines kooperierenden Partners positiv auf deren Wachstum aus. Erklärt werden kann dies mit dem weit geringeren Energieaufwand, den beide Einzelstämme in die Produktion der ausgetauschten Aminosäuren investieren müssen. Durch eine Spezialisierung auf die Produktion bestimmter, aber eben nicht aller notwendigen Aminosäuren wurden die Bakterienzellen effektiver und konnten dadurch schneller wachsen.

Interessanterweise konnten sich zwei kooperierende, Aminosäure-austauschenden Stämme selbst gegen einen autark wachsenden Wildtyp-Stamm durchsetzen, der offenbar nicht von der Kooperation der beiden Partner profitierte.

Die Ergebnisse der Forschergruppe um Christian Kost verdeutlichen, warum Symbiosen mit Bakterien so weit verbreitet sind. Im Laufe der Evolution verbinden sich die beteiligten Partner dabei oft so eng miteinander, dass sie zu einem neuen, vielzelligen Organismus verschmelzen.

Das Forschungsprojekt wurde gefördert von der Volkswagen Stiftung, der Jena School for Microbial Communication, der Fundação Calouste Gulbenkian und der Fundação para a Ciência e a Tecnologia sowie der Siemens SA Portugal. [JWK/AO]

Originalveröffentlichung:
Pande, S., Merker, H., Bohl, K., Reichelt, M., Schuster, S., de Figueiredo, L., Kaleta, C., Kost, C. (2013). Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. The ISME Journal. Advance online publication 28 November 2013; doi: 10.1038/ismej.2013.211

http://dx.doi.org/10.1038/ismej.2013.211

Weitere Informationen von
Dr. Christian Kost, +49 3641 57-1212, ckost@ice.mpg.de
Kontakt und Bildanfragen
Angela Overmeyer M.A., MPI für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, overmeyer@ice.mpg.de

Download von hochaufgelösten Fotos über http://www.ice.mpg.de/ext/735.html

Angela Overmeyer | Max-Planck-Institut
Weitere Informationen:
http://www.ice.mpg.de/ext/1051.html?&L=1

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie