Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Arbeitsteilung im Fischgehirn

25.07.2014

Damit ein Fisch vorwärts schwimmen kann, müssen Nervenzellen in seinem Gehirn und Rückenmark fein abgestimmt die Hin- und Her-Bewegungen des Schwanzes kontrollieren. Doch auch die Stellung des Schwanzes, die die Schwimmrichtung vorgibt, muss durch Hirnaktivität feinjustiert werden.

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried identifizierten nun mit Hilfe der neuen Methode der Optogenetik eine kleine Gruppe von Nervenzellen, die die Bewegungen der Schwanzflosse lenken. Auch das menschliche Gehirn kontrolliert Körperbewegungen durch Nervenbahnen in der gleichen Gehirnregion und nutzt daher vermutlich ähnliche Verarbeitungsmechanismen wie der Fisch.


nMLF-Region im Mittelhirn von Zebrafischlarven. Mit Hilfe der Optogenetik können Forscher hier einzelne Nervenzellen (lila) gezielt aktivieren.

(c) MPI für Neurobiologie / Thiele

Schon lange versuchen Neurobiologen herauszufinden, wie neuronale Netzwerke tierisches, und auch menschliches Verhalten steuern. Dabei wird kontrovers diskutiert, ob das Gehirn eher dezentral oder modular organisiert ist. Bei einer dezentralen Organisation ruft das Zusammenspiel sehr vieler Nervenzellen ein bestimmtes Verhaltensmuster hervor.

In diesem Fall kann einzelnen Nervenzellen keine genaue Funktion zugewiesen werden. Ist das Gehirn dagegen modular aufgebaut, würden einzelne Gehirnbereiche bestimmte Kernkompetenzen besitzen, die jeweils einen spezialisierten Beitrag zum Verhalten leisten. Solche neuronalen Schaltkreis-Module könnten ganz unterschiedlich kombiniert werden und eine Reihe verschiedener Verhaltensantworten beeinflussen.

Hebel im Fischgehirn?

Forscher um Herwig Baier vom Max-Planck-Institut für Neurobiologie wollen der Organisation des Gehirns mit Hilfe von Zebrafischlarven auf den Grund gehen. Im Hirnstamm dieser Tiere liegt die sogenannte absteigende Retikulärformation. Die Nervenzellen dieser Region eignen sich optimal um die Hirnorganisation zu untersuchen: Die Zellen stehen in direktem Kontakt zu Motorneuronen im Rückenmark der Fische und können so Schwanzbewegungen unmittelbar beeinflussen. „Die Retikulärformation ist wie das "Cockpit" der Fische und wir haben uns gefragt, ob es hier einzelne "Hebel" gibt, mit denen die Schwanzbewegungen gesteuert werden”, fasst Herwig Baier die Herausforderung zusammen.

Auf ihrer Suche nach den "Hebeln" konzentrierten sich die Forscher auf einen kleinen Gehirnkern (nMLF) innerhalb der Retukulärformation. Doch wie kann der Einfluss einzelner nMLF-Nervenzellen auf die Schwanzbewegungen untersucht werden? Erst seit kurzem sind solche Untersuchungen überhaupt denkbar. Mit der neuen Methode der Optogenetik kann durch Licht die Aktivität von Nervenzellen beeinflusst werden. Da Zebrafischlarven – und auch ihr Gehirn – transparent sind, konnten die Forscher ganz gezielt einzelne, genetisch veränderte Zellen durch das Anleuchten mit blauem Licht "anschalten". Dadurch hervorgerufene Schwanzbewegungen der Fische konnten so einzelnen Nervenzellen zugeordnet werden.

Nervenzellen und Steuerpinnen

Eine erste Reihe Versuche zeigte, dass die Zellen des nMLF-Bereichs scheinbar an vielen Bewegungen beteiligt sind – von der Vorwärts- bis zur Drehbewegung. Eine angepasste, zweite Versuchsreihe deutete jedoch darauf hin, dass die Zellen vor allem die Auslenkung des Schwanzes steuern. Sind die nMLF-Zellen somit Teil eines multifunktionalen Zentrums oder doch spezialisiert auf bestimmte Funktionen? Um diese Frage zu klären, schalteten die Neurobiologen in einer weiteren Versuchsreihe ganz gezielt einzelne nMLF-Zellen aus. „Dieses Experiment brachte den Durchbruch”, erinnert sich Tod Thiele, der Erstautor der nun erschienenen Studie.

Die Ergebnisse zeigen, dass die nMLF-Zellen zwar bei einer Vielzahl von Schwimmbewegungen aktiv sind. Sie tragen jedoch nur einen Teil der Bewegung bei – sie geben mit der Haltung des Schwanzes die Schwimmrichtung vor. Die Nervenzellen im nMLF-Bereich sind daher eher ein spezialisiertes Modul in einem dezentralisierten Kontrollsystem des Schwimmapparats. Herwig Baier veranschaulicht dies so: „Man kann das Ganze mit dem Antrieb eines Motorboots vergleichen.” Der Bootsmotor, der den Propeller antreibt, bestimmt die Geschwindigkeit, während die Steuerpinne das Boot lenkt. Im Gehirn werden die Aufgaben anscheinend sehr ähnlich verteilt. Vor einiger Zeit hatte das Team von Herwig Baier eine kleine Region im Hinterhirn entdeckt, die wie ein Motor wirkt und den Fisch vorantreibt. „Jetzt haben wir mit den nMLF-Zellen auch die Steuerpinne im Fischgehirn gefunden”, freut sich Herwig Baier. Auch im menschlichen Gehirn werden Bewegungen von einer Vielzahl von Kernen in der Retikulärformation kontrolliert. Die Studie legt daher nahe, dass Aufgaben auch in unserem Gehirn ähnlich wie beim Zebrafisch verteilt sein können.

Originalveröffentlichung:
Tod Thiele, Joseph Donovan, Herwig Baier,
Descending control of swim posture by a midbrain nucleus in zebrafish
Neuron, 24. Juli 2014

Kontakt:
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker@neuro.mpg.de
www.neuro.mpg.de

Prof. Dr. Herwig Baier
Abteilung Gene – Schaltkreise – Verhalten
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 3200
Email: hbaier@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de - Webseite des MPI für Neurobiologie
http://www.neuro.mpg.de/baier/de - Webseite der Abteilung von Prof. Herwig Baier

Dr. Stefanie Merker | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie