Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Arbeitsteilung im Fischgehirn

25.07.2014

Damit ein Fisch vorwärts schwimmen kann, müssen Nervenzellen in seinem Gehirn und Rückenmark fein abgestimmt die Hin- und Her-Bewegungen des Schwanzes kontrollieren. Doch auch die Stellung des Schwanzes, die die Schwimmrichtung vorgibt, muss durch Hirnaktivität feinjustiert werden.

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried identifizierten nun mit Hilfe der neuen Methode der Optogenetik eine kleine Gruppe von Nervenzellen, die die Bewegungen der Schwanzflosse lenken. Auch das menschliche Gehirn kontrolliert Körperbewegungen durch Nervenbahnen in der gleichen Gehirnregion und nutzt daher vermutlich ähnliche Verarbeitungsmechanismen wie der Fisch.


nMLF-Region im Mittelhirn von Zebrafischlarven. Mit Hilfe der Optogenetik können Forscher hier einzelne Nervenzellen (lila) gezielt aktivieren.

(c) MPI für Neurobiologie / Thiele

Schon lange versuchen Neurobiologen herauszufinden, wie neuronale Netzwerke tierisches, und auch menschliches Verhalten steuern. Dabei wird kontrovers diskutiert, ob das Gehirn eher dezentral oder modular organisiert ist. Bei einer dezentralen Organisation ruft das Zusammenspiel sehr vieler Nervenzellen ein bestimmtes Verhaltensmuster hervor.

In diesem Fall kann einzelnen Nervenzellen keine genaue Funktion zugewiesen werden. Ist das Gehirn dagegen modular aufgebaut, würden einzelne Gehirnbereiche bestimmte Kernkompetenzen besitzen, die jeweils einen spezialisierten Beitrag zum Verhalten leisten. Solche neuronalen Schaltkreis-Module könnten ganz unterschiedlich kombiniert werden und eine Reihe verschiedener Verhaltensantworten beeinflussen.

Hebel im Fischgehirn?

Forscher um Herwig Baier vom Max-Planck-Institut für Neurobiologie wollen der Organisation des Gehirns mit Hilfe von Zebrafischlarven auf den Grund gehen. Im Hirnstamm dieser Tiere liegt die sogenannte absteigende Retikulärformation. Die Nervenzellen dieser Region eignen sich optimal um die Hirnorganisation zu untersuchen: Die Zellen stehen in direktem Kontakt zu Motorneuronen im Rückenmark der Fische und können so Schwanzbewegungen unmittelbar beeinflussen. „Die Retikulärformation ist wie das "Cockpit" der Fische und wir haben uns gefragt, ob es hier einzelne "Hebel" gibt, mit denen die Schwanzbewegungen gesteuert werden”, fasst Herwig Baier die Herausforderung zusammen.

Auf ihrer Suche nach den "Hebeln" konzentrierten sich die Forscher auf einen kleinen Gehirnkern (nMLF) innerhalb der Retukulärformation. Doch wie kann der Einfluss einzelner nMLF-Nervenzellen auf die Schwanzbewegungen untersucht werden? Erst seit kurzem sind solche Untersuchungen überhaupt denkbar. Mit der neuen Methode der Optogenetik kann durch Licht die Aktivität von Nervenzellen beeinflusst werden. Da Zebrafischlarven – und auch ihr Gehirn – transparent sind, konnten die Forscher ganz gezielt einzelne, genetisch veränderte Zellen durch das Anleuchten mit blauem Licht "anschalten". Dadurch hervorgerufene Schwanzbewegungen der Fische konnten so einzelnen Nervenzellen zugeordnet werden.

Nervenzellen und Steuerpinnen

Eine erste Reihe Versuche zeigte, dass die Zellen des nMLF-Bereichs scheinbar an vielen Bewegungen beteiligt sind – von der Vorwärts- bis zur Drehbewegung. Eine angepasste, zweite Versuchsreihe deutete jedoch darauf hin, dass die Zellen vor allem die Auslenkung des Schwanzes steuern. Sind die nMLF-Zellen somit Teil eines multifunktionalen Zentrums oder doch spezialisiert auf bestimmte Funktionen? Um diese Frage zu klären, schalteten die Neurobiologen in einer weiteren Versuchsreihe ganz gezielt einzelne nMLF-Zellen aus. „Dieses Experiment brachte den Durchbruch”, erinnert sich Tod Thiele, der Erstautor der nun erschienenen Studie.

Die Ergebnisse zeigen, dass die nMLF-Zellen zwar bei einer Vielzahl von Schwimmbewegungen aktiv sind. Sie tragen jedoch nur einen Teil der Bewegung bei – sie geben mit der Haltung des Schwanzes die Schwimmrichtung vor. Die Nervenzellen im nMLF-Bereich sind daher eher ein spezialisiertes Modul in einem dezentralisierten Kontrollsystem des Schwimmapparats. Herwig Baier veranschaulicht dies so: „Man kann das Ganze mit dem Antrieb eines Motorboots vergleichen.” Der Bootsmotor, der den Propeller antreibt, bestimmt die Geschwindigkeit, während die Steuerpinne das Boot lenkt. Im Gehirn werden die Aufgaben anscheinend sehr ähnlich verteilt. Vor einiger Zeit hatte das Team von Herwig Baier eine kleine Region im Hinterhirn entdeckt, die wie ein Motor wirkt und den Fisch vorantreibt. „Jetzt haben wir mit den nMLF-Zellen auch die Steuerpinne im Fischgehirn gefunden”, freut sich Herwig Baier. Auch im menschlichen Gehirn werden Bewegungen von einer Vielzahl von Kernen in der Retikulärformation kontrolliert. Die Studie legt daher nahe, dass Aufgaben auch in unserem Gehirn ähnlich wie beim Zebrafisch verteilt sein können.

Originalveröffentlichung:
Tod Thiele, Joseph Donovan, Herwig Baier,
Descending control of swim posture by a midbrain nucleus in zebrafish
Neuron, 24. Juli 2014

Kontakt:
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker@neuro.mpg.de
www.neuro.mpg.de

Prof. Dr. Herwig Baier
Abteilung Gene – Schaltkreise – Verhalten
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 3200
Email: hbaier@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de - Webseite des MPI für Neurobiologie
http://www.neuro.mpg.de/baier/de - Webseite der Abteilung von Prof. Herwig Baier

Dr. Stefanie Merker | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität
25.04.2017 | Universität Bielefeld

nachricht Wehrhaft gegen aggressiven Sauerstoff - Metalloxid-Nickelschaum-Elektroden in der Wasseraufspaltung
25.04.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen