Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Antikörper mit eingebautem Virusprotein soll Krebstherapie verbessern

05.02.2015

Wissenschaftler aus dem Deutschen Krebsforschungszentrum und aus dem Helmholtz-Zentrum München suchen nach neuen Möglichkeiten, Lymphdrüsenkrebs zu bekämpfen: Sie entwickelten ein neues Verfahren, das dem Immunsystem eine Virusinfektion der Krebszellen vortäuscht. Die so aktivierten Abwehrzellen konnten die Krebszellen effizient abtöten.

Als Non Hodgkin-Lymphome bezeichnen Mediziner über 20 verschiedene Krebserkrankungen des Lymphsystems. Meistens gehen diese Erkrankungen von entarteten B-Lymphozyten aus. „Die Heilungsrate bei Lymphomen liegt heute bei etwa 70 Prozent. Aber insbesondere bei Rückfällen fehlen Therapien, mit denen wir den Patienten wirklich helfen können“, erklärt Prof. Henri-Jacques Delecluse vom Deutschen Krebsforschungszentrum. „Wir suchen daher nach neuen Wegen, das körpereigene Abwehrsystem beim Kampf gegen die Lymphomzellen zu unterstützen.“

Der Wissenschaftler suchte mit seiner Arbeitsgruppe sowie mit Josef Mautner und Regina Feederle aus dem Helmholtz-Zentrum München nach Möglichkeiten, die Lymphomzellen besonders zu markieren und dadurch für das Immunsystem sichtbarer zu machen. Dabei setzten die Forscher Antikörper ein, die ein Stück Virusprotein als eingebautes Erkennungszeichen tragen.

Die Bindungsstellen der Antikörper waren gegen spezifische Oberflächenmoleküle der Lymphomzellen gerichtet. An das „hintere“ Ende des Antikörperproteins hatten die Forscher mit gentechnischen Methoden Proteinbruchstücke des Epstein-Barr-Virus (EBV) eingebaut. Dieser Erreger ist in der Bevölkerung weit verbreitet, so dass viele Menschen bereits Gedächtnis-T-Zellen haben, die bei einem erneuten Kontakt mit dem gleichen Erreger schnell eine schlagkräftige Abwehrreaktion aufbauen können.

Mit ihren Bindungsstellen docken die Antikörper an die entarteten B-Zellen an und werden anschließend ins Zellinnere aufgenommen, quasi verschluckt. Dort wird das Antikörperprotein zerlegt und die einzelnen Bruchstücke von speziellen Molekülen auf der Oberfläche der Krebszellen präsentiert. So gelangt auch das Virusprotein auf die Zelloberfläche und täuscht dem Immunsystem eine EBV-Infektion vor.

Eine Virusinfektion ist ein Alarmzeichen, das T-Zellen nicht ignorieren können. In der Kulturschale töteten sie die vermeintlich infizierten Lymphomzellen erfolgreich ab. Entnahmen die Forscher Blutzellen von Personen, die bereits eine Epstein-Barr-Virus-Infektion hinter sich hatten, so ließen sich mit den Antigen-beladenen Antikörpern erfolgreich Gedächtnis-T-Zellen aktivieren. „Das ist ein sicheres Anzeichen dafür, dass unsere Antigen-beladenen Antikörper auch im lebenden Organismus eine Immunabwehr gegen die Lymphomzellen auslösen können“, erläutert Henri-Jacques Delecluse.

Abhängig von ihrer genetischen Ausstattung präsentieren die Zellen verschiedener Menschen unterschiedliche Abschnitte der EBV-Proteine auf ihrer Oberfläche. Um das Immunsystem möglichst vieler Menschen aktivieren zu können, bauten Delecluse und Kollegen auch größere Stücke der EBV-Proteine in ihre Antikörper ein. Daraus können die Zellen, je nach ihrer genetischen Ausstattung, verschiedene kleine Proteinabschnitte ausschneiden und auf ihrer Oberfläche präsentieren.

„Eine Schwachstelle von Krebstherapien mit Antikörpern ist, dass die Tumorzellen das Oberflächenmolekül, gegen das sich der Antikörper richtet, von ihrer Oberfläche verschwinden lassen. Um dieser Situation vorzubeugen, haben wir mit einer Mischung aus Antikörpern gearbeitet, die sich gegen vier verschiedene Oberflächenmoleküle der B-Zellen richten“, erläutert Delecluse die Vorteile seines Therapieansatzes.

Antigen-beladenen Antikörper waren zunächst als Impfstoff entwickelt worden, um Menschen damit gegen Krankheitserreger zu immunisieren. „Wir haben hier zum ersten Mal gezeigt, dass sie auch ein geeignetes Werkzeug für die Krebstherapie sein können, nicht nur gegen B-Zell-Lymphome, sondern vermutlich auch gegen andere Krebsarten.“

Xiaojun Yu, Marta Ilecka, Emmalene J. Bartlett, Viktor Schneidt, Rauf Bhat, Josef Mautner, Regina Feederle and Henri-Jacques Delecluse: Antigen-armed antibodies targeting B lymphoma cells effectively activate antigen-specific CD4+ T cells. Blood 2015, DOI: 10.1182/blood-2014-07-591412

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums ist ein wichtiger Beitrag, um die Chancen von Krebspatienten zu verbessern. Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Ansprechpartner für die Presse:

Dr. Stefanie Seltmann
Leiterin Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42-2854
F: +49 6221 42-2968
E-Mail: S.Seltmann@dkfz.de

Dr. Sibylle Kohlstädt
Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42 2843
F: +49 6221 42 2968
E-Mail: S.Kohlstaedt@dkfz.de

E-Mail: presse@dkfz.de

www.dkfz.de 

Dr. Stefanie Seltmann | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics