Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Angriffswerkzeug der Bakterien hochaufgelöst in 3D

21.05.2012
Pest, Bakterienruhr und Cholera haben eines gemeinsam: Sie werden von Bakterien ausgelöst, die ihren Wirt mit einem ausgeklügelten Injektionsapparat infizieren.

Über nadelartige Strukturen spritzen sie molekulare Wirkstoffe in ihre Wirtszellen und überlisten so deren Immunabwehr. Forscher vom Göttinger Max-Planck-Institut (MPI) für biophysikalische Chemie haben in Zusammenarbeit mit Kollegen am Berliner MPI für Infektionsbiologie und der University of Washington in Seattle (USA) jetzt die Struktur einer solchen Nadel im atomaren Detail aufgeklärt. Ihre Erkenntnisse könnten dazu beitragen, Medikamente maßzuschneidern und Strategien zu entwickeln, die den Infektionsprozess gezielt verhindern.


Bakterielle Infektion von Wirtszellen: Begeißelte Erreger des Typs Salmonella typhimurium (orange) nehmen Kontakt mit einer menschlichen Wirtszelle (blau) auf. Bild: Christian Goosmann, Diane Schad, Rashmi Gupta, Michael Kolbe


Aus Shigella flexneri isolierte Spritzen. Die Zugabe von Nadelprotein führt zu einer spontanen Verlängerung einiger Nadeln. Die Länge des Balkens entspricht 100 Nanometer (1 Nanometer entspricht einem millionstel Millimeter). Bild: Christian Goosmann, Michael Kolbe

Es ist ein tückisches Werkzeug, das die Erreger von Pest oder Cholera so gefährlich macht. In Form hunderter winziger hohler Nadeln ragt es aus der Bakterienmembran heraus. Diese Miniatur-Spritzen bilden zusammen mit der in die Membran eingebetteten Basis das sogenannte Typ III-Sekretionssystem – einen Injektionsapparat, mit dem die Erreger molekulare Wirkstoffe in das Innere ihrer Wirtszellen einschleusen. Dort manipulieren die Substanzen wichtige Stoffwechselvorgänge und setzen die Immunabwehr der infizierten Zellen außer Gefecht – mit fatalen Folgen. Der Erreger kann sich nun ungehindert im Organismus ausbreiten. Einmal infiziert, helfen bislang traditionelle Antibiotika. Einzelnen Bakterienstämmen allerdings gelingt es immer wieder, Resistenzen zu bilden. Spezifischere Medikamente zu entwickeln ist daher ein wichtiges Ziel vieler Forschungsgruppen weltweit.

Atom für Atom wird die Struktur sichtbar

Die genaue Struktur der 60 bis 80 Nanometer (millionstel Millimeter) langen und rund acht Nanometer breiten Nadeln blieb Forschern bislang verborgen. Klassische Methoden wie die Röntgenkristallographie oder die Elektronenmikroskopie versagten bisher oder ergaben falsche Modellstrukturen. Nicht kristallisierbar und unlösbar widersetzte sich die Nadel allen Versuchen, ihren atomaren Aufbau zu entschlüsseln. Ein Team von Physikern, Biologen und Chemikern um Adam Lange und Stefan Becker am MPI für biophysikalische Chemie in Göttingen wählte daher einen völlig neuen Ansatz. In Kooperation mit David Baker an der University of Washington und Michael Kolbe am MPI für Infektionsbiologie stellten die Wissenschaftler die Nadel im Labor her und kombinierten Festkörper-NMR-Spektroskopie, Elektronenmikroskopie und Computermodellierung – mit Erfolg: Atom für Atom haben die Forscher die Struktur der Nadel aufgeklärt und ihren molekularen Aufbau erstmals im Ångström-Bereich sichtbar gemacht – das ist eine Auflösung von weniger als einem Zehntel eines millionstel Millimeters.

Fortschritte auf mehreren Gebieten waren dafür nötig. „Methodisch sind wir einen großen Schritt vorangekommen, beim Herstellen der Proben ebenso wie bei der Festkörper-NMR-Spektroskopie“, sagt Lange. „Nicht zuletzt konnten wir in der Abteilung NMR-basierte Strukturbiologie von Christian Griesinger an einem der derzeit leistungsfähigsten Festkörper-NMR-Spektrometer weltweit messen.“ Das Magnetfeld dieses 850 Megahertz-Spektrometers ist mit 20 Tesla rund 400 000-mal so stark wie das der Erde.

Eine wandelbare Oberfläche trickst das Immunsystem aus

„Der Bauplan der Nadeln barg für uns große Überraschungen“, erzählt Lange. Die Nadeln von Erregern so unterschiedlicher Krankheiten wie Salmonellenvergiftung, Bakterienruhr oder Pest zeigen auffällige Gemeinsamkeiten – wie erwartet. Doch anders als bisher vermutet ist es der innere Teil der Nadeln, der bei den unterschiedlichen Erregern auffallend ähnlich aufgebaut ist. Die Oberfläche der Nadel dagegen ist erstaunlich variabel. „Diese Wandelbarkeit könnte eine Strategie der Bakterien sein, um der Immunabwehr des Wirts zu entkommen“, meint Kolbe. Veränderungen auf der Nadeloberfläche könnten es dem Immunsystem des Wirts erschweren, den Erreger wiederzuerkennen.

Der Injektionsapparat der Bakterien beschäftigt die Wissenschaftler Lange, Kolbe, Becker und ihre Max-Planck-Kollegen Christian Griesinger und Arturo Zychlinsky schon seit mehreren Jahren. Bereits 2010 hatten sie gemeinsam mit der Bundesanstalt für Materialforschung und -prüfung herausgefunden, wie Bakterien ihre Miniatur-Spritzen zusammenbauen. Dass die Forscher nun auch ihren Bauplan im atomaren Detail kennen, ermöglicht nicht nur wichtige neue Einblicke, wie diese Erreger ihre Wirtszellen überlisten. Es eröffnet zugleich die Perspektive, den Aufbau der Spritze und das Einschleusen der bakteriellen Wirkstoffe in die Wirtszelle mit einem maßgeschneiderten Molekül zu blockieren. Solche Substanzen, Anti-Infektiva genannt, könnten spezifischer und zu einem viel früheren Zeitpunkt der Infektion wirken als traditionelle Antibiotika. „Unser neues Verfahren erlaubt es uns endlich, die Nadeln im Labor in größerer Menge herzustellen. Unser Ziel ist es nun, Hochdurchsatzverfahren zu entwickeln, um nach neuen Wirkstoffen zu suchen, die die Nadelbildung verhindern“, erklärt Stefan Becker.

Originalveröffentlichung
Antoine Loquet, Nikolaos G. Sgourakis, Rashmi Gupta, Karin Giller, Dietmar Riedel, Christian Goosmann, Christian Griesinger, Michael Kolbe, David Baker, Stefan Becker, and Adam Lange: Atomic Model of the Type III Secretion System Needle. Nature, 20. Mai 2012, doi:10.1038/nature11079.
Kontakt:
Dr. Adam Lange
Forschungsgruppe Festkörper-NMR-Spektroskopie
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 / 201-2214
E-Mail: adla@nmr.mpibpc.mpg.de
Dr. Stefan Becker
Gruppe Molekularbiologie der Abteilung NMR-basierte Strukturbiologie
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 / 201-2222
E-Mail: sabe@nmr.mpibpc.mpg.de
Dr. Michael Kolbe
Forschungsgruppe Funktion und Struktur von Typ III-Sekretionssystemen
Max-Planck-Institut für Infektionsbiologie, Berlin
Tel.: +49 30 / 28460-332
E-Mail: kolbe@mpiib-berlin.mpg.de
Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 / 201-1304
E-Mail: crotte@gwdg.de

Dr. Carmen Rotte | Max-Planck-Institut
Weitere Informationen:
http://www.mpibpc.mpg.de/research/ags/lange/index.html
http://www.mpg.de/5801052/bakterien_sekretionssystem
http://www.mpiib-berlin.mpg.de/de/forschung/zellmikro.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften