Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Altern im Zeitraffer – durch DNA-Schäden

30.08.2017

Im Laufe der Zeit akkumuliert die Erbsubstanz mehr und mehr Schäden – Alterung ist die Folge. Die vielfältigen Auswirkungen der DNA-Schäden konnten nun in bisher nicht bekannter Komplexität gezeigt werden. Die Studie der Kölner Wissenschaftlerinnen und Wissenschaftler um Björn Schumacher von der Universität zu Köln wurde im Fachjournal Cell Reports veröffentlicht.

Die Erbsubstanz DNA ist Grundlage und Baustein unseres Lebens – wie eine Bedienungsanleitung enthält sie alle Informationen, die einzelne Zellen und der ganze Körper zum Funktionieren brauchen. Dabei ist die DNA ständiger Schädigung wie UV-Strahlung, Umweltgiften und schädlichen Stoffwechselprodukten ausgesetzt.


Der Fadenwurm C. elegans ist ein wichtiges Modell für die Erforschung der Alterung.

Diletta Edifizi

Viele der Schäden können durch ausgeklügelte Reparaturmechanismen wieder ausgebessert werden. Dennoch akkumulieren sich im Laufe des Lebens die vielfältigen Schäden – Alterung ist eine Folge davon. Kölner Wissenschaftler um Prof. Dr. Björn Schumacher vom Exzellenzcluster für Alternsforschung CECAD versuchen den Alterungsprozess besser zu verstehen.

Für die Studie, die im Fachblatt Cell Reports veröffentlich wurde, untersuchten die Wissenschaftlerinnen und Wissenschaftler den Fadenwurm Caenorhabditis elegans. Wegen seiner Lebensspanne von etwa zwanzig bis dreißig Tagen ist dieses Tier ein beliebter Modellorganismus der Alternsforschung.

Als ganz junge, nur einen Tag alte Würmer mit DNA schädigendem UV-Licht bestrahlt wurden, stellte das Team um Schumacher fest, dass diese jungen Würmer innerhalb weniger Stunden schon erstaunliche Ähnlichkeiten zu Tieren in fortgeschrittenem Alter zeigten. Sie verglichen dabei in umfassender Weise Proteine, den Fetthaushalt, den Stoffwechsel und Signalwege.

Als den besonderen „Aha-Moment“ beschreibt Schumacher den Augenblick, als sie feststellten, dass sämtliche Veränderungen, die sie aus den alten Tieren kannten, nach der UV-Behandlung auch in den jüngeren Tieren zu finden waren. „Alles war da, das komplette Bild des Alterungsprozesses. Damit konnten wir zeigen, dass die alternden Tiere ihre biologischen Prozesse umprogrammieren, weil sie auf die zunehmenden Schäden in der DNA reagieren. Ein Altern im Zeitraffer gewissermaßen,“ so Schumacher.

Insgesamt wurden über 5000 verschiedene Proteine und ihre Verbindungen über Signalwege untersucht: Wie sind sie verbunden, was haben sie miteinander zu tun, regulieren sie den gleichen Prozess? Wie in einem Rätselheft wurden die Verbindungen zwischen Stoffwechsel, Erhalt von Erbgut und Eiweißstrukturen und den Signalwegen, die den Alterungsprozess bestimmen, gesucht. „Am Ende haben wir sämtliche Fäden und Knotenpunkte gefunden – das war schon beeindruckend und viel besser als erhofft. Was sich in anderen Studien punktuell abgezeichnet hat, konnten wir nun im Gesamtbild zeigen,“ so der Forscher.

Auch wenn Wurm und Mensch auf den ersten Blick nicht viel gemeinsam haben, sind die zellulären Prozesse doch sehr ähnlich und auf den Menschen übertragbar. Viele Signalwege sind gleich, der Stoffwechsel ähnlich, die Qualitätskontrolle der Proteine vergleichbar. Das macht den Fadenwurm für die Forschung so relevant. Im nächsten Schritt wollen die Forscherinnen und Forscher die Signalwege weiter untersuchen. Ziel ist es die Auswirkungen der DNA-Schäden auf den Organismus besser zu verstehen und gesundes Altern ermöglichen zu können.

Originalpublikation:

Multilayered reprogramming in response to persistent DNA damage in
C. elegans; Diletta Edifizi, Hendrik Nolte, Vipin Babu, Laia Castells-Roca, Michael M. Mueller, Susanne Brodesser, Marcus Krüger, Björn Schumacher
Cell Reports 20, 2026–2043 August 29, 2017

Kontakt:

Prof. Dr. Björn Schumacher
Principal Investigator, Chair for Genome Stability in Ageing and Disease
Tel. +49 221 478 84202
bjoern.schumacher[at]uni-koeln.de

Peter Kohl
Public Relations Officer
Tel. +49 221 478 84043
pkohl[at]uni-koeln.de

Gabriele Meseg-Rutzen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-koeln.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics