Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Algen geben Gas

19.09.2014

Genetisch veränderte Enzyme ermöglichen eine effiziente Produktion von Wasserstoff

Wasserstoff als regenerativer Treibstoff, produziert in riesigen Wassertanks voller Algen, die dafür lediglich Sonnenlicht benötigen: theoretisch ein gutes Konzept, das in der Vergangenheit aber vor allem an seinem massiven Platzbedarf gescheitert ist.

Wissenschaftler der Mülheimer Max-Planck-Institute für chemische Energiekonversion und für Kohlenforschung sowie der AG Photobiotechnologie an der Ruhr-Universität Bochum haben nun einen Weg gefunden, die Effizienz der Wasserstoffproduktion in Mikroalgen um das Fünffache zu steigern. Wenn die Algen den Energieträger wirkungsvoller erzeugen, lässt sich dieser auf einer kleineren Fläche mit praxistauglicher Ausbeute gewinnen. Für die Produktion des Wasserstoffs sind dann auch keine seltenen und teuren Edelmetalle mehr nötig, mit deren Hilfe das energiereiche Gas bisher technisch aus Wasser abgespalten wird.

Lebewesen brauchen Elektronen an vielen Stellen, denn sie bauen damit zahllose chemische Verbindungen auf. Algen und andere Photosynthese betreibende Organismen setzen Elektronen mit Hilfe des Sonnenlichtes aus Wasser frei und verteilen sie dann in der Zelle.

Dafür ist das eisenhaltige Protein PETF zuständig, es transportiert die Elektronen vor allem an die Ferredoxin-NADP+-Oxidoreduktase (FNR), sodass zunächst NADPH gebildet wird und schließlich aus Kohlenstoffdioxid Kohlenhydrate entstehen. Zu den vielen weiteren Prozessen, für die PETF die Elektronen liefert, gehört auch die Wasserstoffproduktion durch Hydrogenasen. Diese sind sehr leistungsfähige Enzyme, die ein einzigartiges aktives Zentrum aus sechs Eisenatomen enthalten, an dem die angelieferten Elektronen an Protonen gebunden  werden. Auf diese Weise entsteht molekularer Wasserstoff.

Mit Hilfe der sogenannten kernmagnetischen Resonanzspektroskopie, auf der auch die medizinische Kernspintomografie beruht, untersuchten die Wissenschaftler um Sigrun Rumpel, Postdoktorandin am Mülheimer Max-Planck-Institut für Chemische Energiekonversion, welche Bestandteile, genauer gesagt Aminosäuren, von PETF mit der Hydrogenase und welche mit FNR interagieren.  

Es zeigte sich, dass zwei Aminosäuren von PETF nur für die Bindung an FNR wichtig sind. Indem die Forscher diese beiden Aminosäuren und das Enzym FNR gezielt genetisch veränderten, konnte das PETF nicht mehr so effizient an FNR binden. Das Enzym lieferte daher weniger Elektronen an FNR und übertrug sie stattdessen vermehrt an die Hydrogenase. Auf diese Weise steigerten die Wissenschaftler die Wasserstoff-Produktion um das Fünffache.

„Damit die Wasserstoffproduktion mithilfe von Algen technisch anwendbar wird, muss ihre Effizienz im Vergleich zum natürlichen Prozess insgesamt um das 10- bis 100-fache steigen“, sagt Sigrun Rumpel. „Wir haben mit der gezielten genetischen Veränderung von PETF und FNR jetzt bereits  einen großen Schritt in diese Richtung gemacht.“

 Bisher wird für die Erzeugung von Wasserstoff aus erneuerbaren Energieträgern Wasser elektrolytisch gespalten. Dafür werden derzeit teure und seltene Edelmetalle wie Platin benötigt, sodass Wasserstoff noch nicht mit anderen Treibstoffen konkurrieren kann. Sigrun Rumpel und andere Forscher arbeiten daher daran, den Energieträger von Algen produzieren zu lassen. Natürlicherweise erzeugen die Mikroorganismen das Gas aber mit sehr geringer Ausbeute. Daher müssten immense Flächen mit Tanks voller Algenkulturen zugestellt werden, um annähernd den Bedarf Deutschlands zu decken, falls Fahrzeuge künftig einmal nicht mehr mit Benzin und Diesel, sondern mit Wasserstoff betrieben würden.

„Die Ergebnisse haben eine große Bedeutung auf dem Weg hin zu einer wettbewerbsfähigen, regenerativen Erzeugung von Treibstoffen mit Hilfe von Mikroalgen“, sagt Sigrun Rumpel. Die Veränderung der Elektronentransferwege könnte die Wasserstoffproduktion in Zukunft noch weiter verbessern. Daher wollen die Forscher nun verschiedene Modifikationen miteinander kombinieren.

Ansprechpartner 

Originalpublikation

 
Sigrun Rumpel, Judith F. Siebel, Christophe Farès, Jifu Duan, Edward Reijerse, Thomas Happe, Wolfgang Lubitz, Martin Winkler
Enhancing hydrogen production of microalgae by redirecting electrons from photosystem I to hydrogenase
Energy & Environmental Science, 29. Juli 2014 DOI: 10.1039/C4EE01444H

Dr. Sigrun Rumpel | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8415420/Algen_Wasserstoff

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Einblicke in die Welt der Trypanosomen
16.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht Geographie verrät das Alter von Viren
16.08.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie