Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aktivierte Nervenzellen produzieren ein Schutzprotein gegen Neurodegeneration

24.08.2015

Heidelberger Forscher entdecken zentralen Mechanismus und identifizieren neuroprotektives Schlüsselmolekül

Aktivierte Nervenzellen produzieren ein Schutzprotein gegen Zelltod. Wie dieser Prozess abläuft und welche Elemente dabei eine entscheidende Rolle spielen, hat ein Forscherteam unter der Leitung von Prof. Dr. Hilmar Bading am Interdisziplinären Zentrum für Neurowissenschaften der Universität Heidelberg entschlüsselt.

„Dass Gehirnaktivität einen neuroprotektiven Effekt hat, war uns bereits bekannt“, so der Heidelberger Neurobiologe. „Jetzt haben wir einen zentralen Mechanismus dafür entdeckt und ein körpereigenes Schlüsselmolekül für den Aufbau des Nervenschutzschildes identifiziert.“ Diese Forschungsergebnisse wurden in der Fachzeitschrift „Cell Reports“ veröffentlicht.

Wenn Nervenzellen absterben, zum Beispiel als Folge eines Schlaganfalls, der Alzheimer-Erkrankung oder auch im Rahmen von Alterungsprozessen, kann dies zu erheblichen Einschränkungen der Gedächtnisleistung führen. Frühere Arbeiten von Prof. Bading haben gezeigt, dass Gehirnaktivität dem Nervenzelltod entgegenwirkt.

Auf molekularer Ebene ist hier der sogenannte NMDA-Rezeptor von Bedeutung. Bei einem Rezeptor dieser Art handelt es sich um ein Molekül, das von biochemischen Botenstoffen – den Neurotransmittern – in Gang gesetzt wird. Der NMDA-Rezeptor lässt aufgrund von Nervenzellaktivität Kalzium in die Zelle einströmen.

Das Kalziumsignal pflanzt sich innerhalb der Zelle bis in den Zellkern fort und schaltet dort ein genetisches Schutzprogramm an. Schon vor einigen Jahren konnte die Arbeitsgruppe von Prof. Bading dieses kernkalzium-regulierte Genprogramm identifizieren. „Jedoch war bislang unklar, wie daraus ein Schutzschild entsteht”, so Hilmar Bading.

Die Wissenschaftler haben nun die Erklärung dafür gefunden – indem sie wiederum NMDA-Rezeptoren untersucht haben. Wenn sich diese Rezeptoren nicht in den Kontaktstellen der Nervenzellen, den Synapsen, befinden, tragen sie nicht zum Schutz der Zellen bei.

Im Gegenteil: Sie schädigen Nervenzellen massiv und führen zu deren Absterben. „Leben und Tod sind nur wenige tausendstel Millimeter voneinander entfernt. Außerhalb der Synapse wird der NMDA-Rezeptor von Dr. Jekyll zu Mr. Hyde”, erläutert Hilmar Bading.

Wie die aktuellen Forschungsergebnisse zeigen, werden die toxischen extrasynaptischen NMDA-Rezeptoren über Gehirnaktivität unterdrückt. Als Aktivator dieser Unterdrückung konnte das Heidelberger Forscherteam das Protein Activin A identifizieren.

Dieses Protein spielt unter anderem im Menstruationszyklus und in der Wundheilung eine wichtige Rolle. Im Nervensystem wird die Produktion von Activin A über Nervenzellaktivität angestoßen. In der Folge führt dies zu einer Verminderung der extrasynaptischen NMDA-Rezeptoren.

Wie Prof. Bading erläutert, wird so ein Schutzschild aufgebaut. Activin A vermittelt zudem die bekannten schützenden Eigenschaften des Wachstumsfaktors BDNF; dies ist ein neurotrophes, das heißt körpereigenes Signalmolekül, das beim Schutz existierender und beim Wachstum neuer Neuronen und Synapsen wirkt. „Das Protein Activin A kann daher als entscheidender Aktivator eines gemeinsamen neuroprotektiven Wirkmechanismus im Gehirn angesehen werden.“

Die Entdeckungen der Heidelberger Neurobiologen eröffnen neue Perspektiven für die Entwicklung therapeutischer Ansätze zur Behandlung degenerativer Erkrankungen des Nervensystems. In ihrer Studie haben die Forscher gezeigt, dass Activin A bei Mäusen die nach einem Schlaganfall auftretenden Hirnschädigungen deutlich reduzieren konnte.

„Unsere Forschungsergebnisse deuten auch darauf hin, dass sich Activin A möglicherweise in der Therapie der Alzheimer-Erkrankung oder der als ‚Veitstanz’ bekannten Chorea Huntington einsetzen lässt. In beiden Krankheiten ist die charakteristische Degeneration von Nervenzellen vermutlich auf eine erhöhte Aktivität der toxischen extrasynaptischen NMDA-Rezeptoren zurückzuführen“, so Prof. Bading. „Für den Alltag bedeuten die neuen Erkenntnisse: Ein aktives Gehirn produziert Activin A und schützt sich so vor Neurodegeneration.“

Originalveröffentlichung:
D. Lau, C. P. Bengtson, B. Buchthal and H. Bading: BDNF Reduces Toxic Extrasynaptic NMDA Receptor Signaling via Synaptic NMDA Receptors and Nuclear Calcium-induced Transcription of inhba/Activin A. Cell Reports (2015), doi: 10.1016/j.celrep.2015.07.038

Kontakt:
Prof. Dr. Hilmar Bading
Interdisziplinäres Zentrum für Neurowissenschaften
Telefon (06221) 54-8218
bading@nbio.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.uni-heidelberg.de/izn/researchgroups/bading

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Glykane als Biomarker für Krebs?
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Selbstfaltendes Origami
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der Krümmung einen Schritt voraus

27.06.2017 | Informationstechnologie

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungsnachrichten

Überschwemmungen genau in den Blick nehmen

27.06.2017 | Informationstechnologie