Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Abgeschnürt - wie die Zelle Nährstoffe aufnimmt

20.09.2011
Dr. Katja Fälber und Prof. Oliver Daumke, Strukturbiologen am Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch haben gemeinsam mit Forschern der Freien Universität (FU) Berlin die molekulare Struktur von Dynamin, einem Drahtzieher der Aufnahme von Nährstoffen in die Zelle entschlüsselt.

Da sich auf diese Weise auch Krankheitserreger, wie zum Beispiel AIDS-Viren, ihren Weg in die Körperzellen bahnen, eröffnet das Verständnis des molekularen Mechanismus neue mögliche Ansatzpunkte für medizinische Anwendungen (Nature, DOI: 10.1038/nature10369)*.

Viele Nährstoffe gelangen aus dem Blut über Kanäle in der Zellmembran in die Körperzellen. Doch nicht für alle Nährstoffe gibt es passende Kanäle. So wird beispielsweise Eisen ausserhalb der Zelle an ein großes Transportmolekül gebunden und auf einem anderen Weg, der Endozytose, in die Zelle importiert. Dabei lagern sich die beladenen Transportmoleküle an die Zellmembran, diese stülpt sich nach innen und die Eisenmoleküle werden samt ihren Transportern in einem kleinen Membranbläschen (Vesikel) in die Zelle aufgenommen und dort freigesetzt.

Ein wichtiger Drahtzieher der Endozytose ist das Eiweißmolekül Dynamin. Und das im wahrsten Sinne des Wortes: Entsteht ein Vesikel, lagern sich Dynamin-Moleküle aneinander und bilden um den Hals des Vesikels eine Spirale. Dynamin funktioniert wie ein kleiner Motor: Es verbraucht den zelleigenen Kraftstoff GTP und nutzt die Energie, um die Spirale zusammen zu ziehen. Das schnürt den Hals des Vesikels ab, so dass es sich von der Zellmembran löst.

Die molekularen Details dieses Zugmechanismus um den Vesikelhals waren bislang ungeklärt. Die Strukturbiologen Prof. Daumke und Dr. Fälber vom MDC sowie der Endozytose-Forscher Prof. Volker Haucke und der Bioinformatiker Dr. Frank Noé von der FU Berlin liefern mit ihrer aktuellen Studie jetzt eine wichtige Grundlage, um diesen Vorgang besser zu verstehen. Es gelang ihnen erstmalig mit Hilfe der Röntgenstrukturanalyse, ein Strukturmodell von Dynamin zu entwickeln. Für diese Untersuchung war es nötig, Proteinkristalle von Dynamin herzustellen. Dazu haben sich die Forscher die Erkenntnisse ihrer vorherigen Studie zu einem mit Dynamin verwandten Protein zu Nutze gemacht. Aus dem Röntgen-Streubild dieser Kristalle konnten die Forscher dann ein detailliertes Bild von Dynamin ableiten. „Jetzt, da wir eine Idee davon haben, wie das Dynamin-Molekül aufgebaut ist, können wir erstmals auf atomarer Ebene verstehen, wie der molekulare Motor Dynamin läuft“, erläutert Prof. Daumke.

Neben der Aufnahme von Nährstoffen ist die Endozytose auch bei der Weiterleitung von Signalen zwischen benachbarten Nervenzellen sowie für das Immunsystem essentiell. Auf diese Weise verleiben sich zum Beispiel Fresszellen Krankheitserreger ein und machen sie unschädlich. Prof. Daumke: „Aber auch Krankheitserreger wie HIV und Influenza Viren machen sich die Endozytose zunutze, um in unsere Körperzellen zu gelangen und sich dort auszubreiten. Daher ist es wichtig, den molekularen Zugmechanismus von Dynamin während der Endozytose noch besser zu verstehen. Dann können wir mögliche Ansatzpunkte für medizinische Anwendungen finden – gerade auch für Patienten mit Muskel- und Nervenerkrankungen, die im Zusammenhang mit Mutationen im Dynamin-Gen stehen.“ In künftigen Forschungsprojekten, die von der Deutschen Forschungsgemeinschaft im Rahmen von Sonderforschungsbereichen (SFB740 und SFB958) gefördert werden, wollen die MDC-Forscher Dynamin daher noch genauer unter die Lupe nehmen. Sie möchten herausfinden, welche Strukturveränderungen Dynamin vollzieht, wenn der Zellkraftstoff GTP an das Protein bindet und der Zugmechanismus am Vesikelhals in Gang gesetzt wird.

*Crystal structure of nucleotide-free dynamin
Katja Faelber1, York Posor2#, Song Gao1,2#, Martin Held3#, Yvette Roske1#, Dennis Schulze1, Volker Haucke2, Frank Noé3 & Oliver Daumke1,4
1Crystallography, Max-Delbrück-Centrum for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany.
2Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany.
3Institute for Mathematics, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany.
4Institute for Medical Physics and Biophysics, Charité, Ziegelstraße 5-9, 10117 Berlin, Germany.

#These authors contributed equally to this work.

Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
in der Helmholtz-Gemeinschaft
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Weitere Informationen:
http://www.mdc-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise