Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bei Fünf ist Schluss

18.03.2011
Menschen können Mengen mit bis zu vier Objekten fehlerfrei schätzen. Wenn es darüber hinaus geht, müssen sie anfangen zu zählen. Diese angeborene Grenze spiegelt sich auch in den Zählsystemen antiker Zivilisationen wider.

„Eins – zwei – drei – vier – viele!“ Wer kleine Kinder hat, weiß, dass Menschen Objekte nur in begrenzter Zahl bestimmen können, wenn ihnen das Zählen nicht möglich ist. Seit 1871 ist auch wissenschaftlich erwiesen, dass der Mensch eine Menge bis maximal vier Objekten stets fehlerfrei schätzen kann. Es war der englische Ökonom William Stanley Jevons, der die entsprechenden Experimente durchführte und die Ergebnisse im Wissenschaftsjournal Nature publizierte.

Jevons benutzte für einen Selbstversuch den folgenden Versuchsaufbau: Er warf schwarze Bohnen in eine weiße Schachtel und schloss sofort die Augen, um reguläres Zählen zu verhindern. Nach über 1000 solchen Versuchen stellte er fest, dass er nur im Fall von ein bis vier Bohnen deren Anzahl richtig schätzen konnte. Ab fünf und mehr Bohnen wurden die Schätzungen immer fehlerhafter, das heißt, die genaue Anzahl von Bohnen konnte ab der Zahl fünf nur durch reguläres Zählen ermittelt werden.

„Diese begrenzte Fähigkeit des Menschen hat schon in früher Zeit Zählsysteme antiker Hochkulturen beeinflusst. Sie ist entscheidend daran beteiligt, dass neue Symbole für Zahlen jenseits der 4 entwickelt wurden“, sagt jetzt Professor Hans Gross, emeritierter Inhaber des Lehrstuhls für Biochemie an der Universität Würzburg. Unter der Überschrift „Give me 5 …“ stellt Gross seine Erkenntnisse in der jüngsten Ausgabe der Fachzeitschrift Communicative & Integrative Biology vor.

Antike Hochkulturen: Bruch zwischen vier und fünf

Tatsache ist: In vielen antiken Hochkulturen gibt es einen auffallenden Bruch in der Schreibweise beim Übergang von der Zahl 4 zur Zahl 5. In der frühesten römischen Antike beispielsweise wurden die Ziffern 1 bis 5 so geschrieben: I, II, III, IIII, V. Später, in der klassischen Periode, änderte sich dann die IIII in eine IV (5 minus 1). Im antiken Südarabien schrieben die Menschen I, II, III, IIII, U. Bei den Maya in Mittelamerika sahen die Zahlen von 1 bis 5 so aus:*, **, ***, ****, I. Frühe Chinesen schrieben I, II, IIII, IIII und X.

„In diesen Hochkulturen mit einem entwickelten Kalender- und Rechnungswesen hat man bewusst oder unbewusst gefühlt oder verstanden, dass Objektzahlen bis 4 ohne zu zählen richtig und fehlerfrei erkannt werden und dass bereits bei fünf Punkten oder Strichen gezählt werden muss. So hat man für die Zahl 5 eigene, neue Zeichen erfunden“, sagt Hans Gross.

Allerdings haben nicht nur Hochkulturen diese Technik verwendet: „Sogar die Wikinger, die sich nur wenig mit Astronomie oder Buchhaltung beschäftigten, schrieben Zahlen in ihren Runenkalendern in vergleichbarer Weise“, sagt Gross. Ein bis vier Punkte entsprachen dort den jeweiligen Zahlen, wohingegen die 5 durch ein > symbolisiert wurde.

Regelmäßige Muster erleichtern das Erkennen

Wie aber sieht das Ganze beispielsweise bei Würfelspielern aus? Die sind doch auch in der Lage, mit nur einem Blick zu erkennen, ob sie eine 5 oder eine 6 gewürfelt haben. „Hier kommt ein anderer Effekt zum tragen: die Mustererkennung“, sagt Gross. Anders als in der Schachtel mit den Bohnen, wo die Objekte jeweils in einem zufälligen Muster angeordnet sind, liegen die Punkte auf dem Würfel immer an der gleichen Stelle. Sie bilden ein regelmäßiges Muster, das jedem Spieler die dahinter stehende Punktezahl verrät, ohne dass er deshalb erst mühselig zählen müsste.

Einen ähnlichen Weg haben die antiken Ägypter für ihr schriftliches Zählsystem gewählt. „Sie haben nicht ab der 5 ein neues Symbol eingeführt. Stattdessen haben sie die Striche jenseits der 4 in bestimmten Mustern angeordnet“, sagt Gross. Drei Stiche oben, zwei darunter standen beispielsweise für die 5. Drei Blöcke mit jeweils drei Strichen ergaben die 9. Erst für die 10 wurde ein neues Symbol eingeführt: ein auf dem Kopf stehende U. „Offensichtlich haben auch die Ägypter erkannt, dass sie einen Weg finden müssen, Zahlen so zu präsentieren, dass diese sich ohne zu zählen auf einen Blick erkennen lassen“, so der Wissenschaftler.

Arabische Zahlen ermöglichen den Fortschritt

Die Probleme mit der 5 und höheren Zahlen verschwanden erst viele Jahrhunderte später – mit der Erfindung der Null im 8. Jahrhundert in Indien und der Einführung der arabischen Ziffern wie wir sie noch heute benutzen zwischen dem 13. und dem 15. Jahrhundert. Beides Entwicklungen, die einen „enormen Zuwachs im Handel und in der Wissenschaft ermöglichten“, wie Hans Gross sagt.

Und trotzdem: Wer will, kann auch heute noch Überbleibsel der antiken Zählweise entdecken. Wenn Menschen Objekte mit Strichlisten zählen, machen sie bis zur Zahl 4 jeweils einen Strich (I, II, III, IIII). Aber statt IIIII für die 5 zu schreiben, streichen sie einfach die IIII mit einem Querstrich durch – und haben damit ein neues Zeichen geschaffen, das ihnen das Abzählen von fünf Strichen erspart.

„Give me 5 … The invention of number five in ancient civilizations”, Hans J. Gross, Communicative & Integrative Biology 4:1, 62-63, doi: 10.4161/cib.4.1.13762

Kontakt:
Prof. Dr. Hans J. Gross,
T: (0931) 31-84027,
E-Mail: hj.gross@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Bildung Wissenschaft:

nachricht Die Verbindung macht’s
24.03.2017 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Gleich und Gleich gesellt sich gern!
21.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

Alle Nachrichten aus der Kategorie: Bildung Wissenschaft >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Krebs erregende Substanzen aus Benzinmotoren

24.05.2017 | Biowissenschaften Chemie

Wasserqualität von Flüssen: Zusätzliche Reinigungsstufen in Kläranlagen lohnen sich

24.05.2017 | Ökologie Umwelt- Naturschutz

Orientierungslauf im Mikrokosmos

24.05.2017 | Physik Astronomie