Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fibonacci: Forschergeist statt Formeln pauken

25.02.2010
Universiät Bayreuth ist Schaltstelle eines eruopäischen Bildungsprojekts

Formeln zu pauken, ist längst nicht alles: Der Unterricht in Mathematik und den Naturwissenschaften soll Schülern in Europa schon bald viel mehr Freude machen. Forschen, Experimentieren und Entdecken werden neugierig machen und Interesse wecken, so soll zielgerichtetes und erfolgreiches Lernen gefördert werden.


Die Europäische Union hat dazu das Bildungsprojekt Fibonacci auf den Weg gebracht. An der Universität Bayreuth, genauer: am Lehrstuhl für Mathematik und ihre Didaktik, befindet sich eine der Schaltstellen dieses ambitionierten Vorhabens. Hier ist das Projekt in wesentlichen Teilen entwickelt worden, von hier aus wird es koordiniert.

Mit 25 Institutionen aus 21 europäischen Ländern ist Fibonacci schon jetzt das größte europäische Bildungsprojekt, das im siebten Forschungsrahmenprogramm der EU gefördert wird. In Paris fand die Auftaktveranstaltung für das Fünf-Millionen-Projekt statt, dabei wurde deutlich: Der Ansatz ist gesamteuropäisch, das Fibonacci-Netz wird bald noch dichter. Bis 2013 sollen mindestens 24 weitere Partner in das Projekt eingebunden werden. Die Universität Bayreuth ist eine der zwei Fibonacci- Zentralen. Professor Dr. Peter Baptist, Inhaber des Lehrstuhls Mathematik und ihre Didaktik, und seine Mitarbeiterin Dagmar Raab koordinieren den Projektbereich Mathematik. Baptist gehört zudem als einziger Wissenschaftler aus Deutschland dem Scientific-Committee des Gesamtvorhabens an.

Ausgangspunkt waren die alarmierenden Ergebnisse eines Berichts, den der frühere französische Premierminister Michel Rocard gemeinsam mit einer hochkarätigen Expertengruppe vorgelegt hatte. In dem Report unter dem Titel „Science Education Now: A Renewed Pedagogy for the Future of Europe“ ist von dringendem Handlungsbedarf die Rede: „Aus zahlreichen Studien

geht hervor, dass immer mehr junge Menschen in Europa ihr Interesse an naturwissenschaftlichen Fächern und an der Mathematik verlieren. Trotz zahlreicher konkreter Projekte und Maßnahmen, mit denen dieser Trend umgekehrt werden soll, ist nur wenig Fortschritt erkennbar. Wenn keine wirksameren Maßnahmen ergriffen werden, werden Europas langfristige Innovationsfähigkeit und auch die Qualität seiner Forschung leiden.“ Eine reelle Chance, die Trendumkehr zu schaffen, sieht die Kommission in der Abkehr von herkömmlichen, häufig demotivierenden Unterrichtsmethoden (Formeln lernen, Formeln anwenden, Prüfung ablegen) und in einer Zuwendung zu eigenständigem forschend- entdeckenden Lernen (IBSME, inquiry based science and mathematics education).

Ein Ansatz, den der Bayreuther Mathematik-Didaktiker Professor Dr. Peter Baptist seit langem schon erfolgreich vertritt. „Wir arbeiten problemorientiert“, sagt Baptist. „Bei unserer Art des Lernens stehen nicht die Formeln im Vordergrund. Wir hängen stattdessen den Schulstoff u.a. an nachvollziehbaren, realitätsnahen Problemen auf und schaffen so Verständnis für die Mathematik. Erst wenn das erreicht ist, geht es ans Üben und ans Automatisieren.“ Das mag logisch klingen, doch Baptist weiß wohl, dass vielerorts noch ganz anders verfahren wird. Gar nicht so selten wird geübt, was das Zeug hält – egal, ob die Schüler verstanden haben, worum es bei dem mathematischen Problem wirklich geht.

Den Unterricht in Mathematik und in den Naturwissenschaften in diesem Sinne zu verändern, war bereits zentrales Anliegen des deutschen Vorläuferprojektes von Fibonacci. In den vergangenen neun Jahren brachte SINUS-Transfer in Deutschland Erfolge, die Europas Bildungspolitiker überzeugten. Für die Naturwissenschaften übernahm das EU-Projekt Pollen Vorbildfunktion. Als Reaktion auf den Rocard-Report entwickelten die Ecole normale supérieure Paris (Koordinator des EU-Projektes Pollen) und der Lehrstuhl für Mathematik und ihre Didaktik der Universität Bayreuth (zentrale Koordination des Projektes SINUS-Transfer im Fach Mathematik) das Projekt Fibonacci. Aus einem Wettbewerb der EU im Rahmen des siebten Forschungsrahmenprogramms ging Fibonacci als das größte Siegerprojekt mit einem Fördervolumen von fünf Millionen Euro hervor.

Diese fünf Millionen sieht Peter Baptist als eine Art Anschubfinanzierung. Der Bayreuther Universitätsprofessor geht davon aus, dass in den beteiligten europäischen Ländern Ministerien und Institutionen Fibonacci ebenfalls unterstützen werden. Der Freistaat Bayern tut das bereits – mit zahlreichen Teilabordnungen von Lehrkräften als Fibonacci-Moderatoren wird eine Fortbildungsinitiative an bayerischen Gymnasien auf den Weg gebracht. Weitere Bundesländer werden folgen. Thüringen, Berlin und Schleswig-Holstein haben bereits angeklopft. Und auch die Vereinigung MINT-EC, die bundesweit über 100 Gymnasien fördert, wir an Fibonacci teilnehmen. Diese Form der Unterstützung hat für Baptist über den monetären Aspekt hinaus Bedeutung. „Endlich stellt sich in der Bildungspolitik eine Nachhaltigkeit ein“, sagt er. „Jetzt hat die Politik erkannt, dass man für Veränderungen im Bildungsbereich einen langen Atem braucht.“

Einen langen Atem und eine breite Basis. Funktionieren wird Fibonacci, wenn engagierte Lehrer die sich bietende Chance wahrnehmen. In Bayern sind bereits 20 Pädagogen benannt, die Erfahrung aus dem SINUS-Projekt mitbringen und künftig ihren Lehrerkollegen die Fibonacci- Philosophie nahebringen werden. Eine solche I mplementierung des Programms in die Lehrer- aus- und -fortbildung gehört ebenso in den Projektplan wie der Aufbau und die Weiterentwicklung eines europaweiten Netzwerkes von Referenzzentren zur Weiterentwicklung des mathematisch-naturwissenschaftlichen Unterrichts. Unter dem Fibonacci-Dach finden Entwicklung, Umsetzung und Evaluation von Unterrichtskonzepten zur Förderung forschend- entdeckenden Lernens statt. Es werden Schul- und Lehrernetzwerke auf regionaler und nationaler Ebene mit dem Ziel verstärkter Kooperation und Teambildung initiiert, es wird die Kooperation von Grund- und weiterführenden Schulen gefördert. Weitere Ziele sind die Erarbeitung und Bereitstellung geeigneter Fortbildungs- und Unterrichtsmaterialien (in Englisch und in der jeweiligen Landessprache), der Aufbau einer Kommunikationsplattform mit integrierter Materialdatenbank sowie der Aufbau eines europäischen Kompetenzzentrums für die Förderung und Weiterentwicklung des mathematischen und naturwissenschaftlichen Unterrichts.

Die organisatorische Gesamtkoordination hat die Ecole normale supérieure Paris übernommen. Die wissenschaftliche Koordination teilen sich der Lehrstuhl für Mathematik und ihre Didaktik der Universität Bayreuth (für das Fach Mathematik) und die Ecole normale supérieure (für die naturwissenschaftlichen Fächer). Neben der Universität Bayreuth werden auch die Universitäten Augsburg (Schwerpunkt Mathematik, Grundschule) und Berlin (Schwerpunkt Naturwissenschaften) als sogenannte Referenzzentren ihre Erfahrungen aus den Programmen SINUS und SINUS-Transfer sowie Pollen in das EU-Projekt Fibonacci einbringen.

Frank Schmaelzle | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Bildung Wissenschaft:

nachricht Vom Feld in die Schule: Aktuelle Forschung zu moderner Landwirtschaft für den Unterricht
23.01.2017 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

nachricht Bei Celisca entsteht das Labor der Zukunft
19.12.2016 | Universität Rostock

Alle Nachrichten aus der Kategorie: Bildung Wissenschaft >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie