Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mehr Luft für schwache Herzen: 150.000 Euro für Forschung an der Universitätsmedizin Göttingen

03.04.2007
Forscher der Universitätsmedizin Göttingen erhalten 150.000 Euro von der Deutschen Forschungsgemeinschaft (DFG) zur Erforschung von Therapiemöglichkeiten bei Herzschwäche und chronischem Herzversagen.

Wie schwache Herzen mehr Luftsauerstoff zum Atmen bekommen können, erforschen Wissenschaftler der Abteilung Herz-Kreislaufphysiologie (Direktorin: Prof. Dr. Dörthe Katschinski) und der Abteilung Kardiologie und Pneumologie (Direktor: Prof. Dr. Gerd Hasenfuß) am Herzzentrum der Universitätsmedizin Göttingen, Georg-August-Universität. Rund 150.000 Euro hat die Deutsche Forschungsgemeinschaft (DFG) dafür jetzt bereitgestellt. Das Team von Prof. Dr. Katschinski und Dr. Harald Kögler, wissenschaftlicher Mitarbeiter in der Abt. Kardiologie und Pneumologie, untersucht gemeinsam den Zusammenhang zwischen Sauerstoffmangel im Herzen und zunehmender Herzmuskelvergrößerung beim "Teufelskreis Herzschwäche".

"Wir möchten schwache Herzen dazu bringen, mehr Blutgefäße für die Sauerstoffversorgung des Herzmuskels zu bilden. Das könnte das Herzwachstum stoppen und die Lebensqualität und das Überleben der Betroffenen mit chronischem Herzversagen deutlich steigern", sagt Dr. Harald Kögler. Das DFG-Einzelprojekt wird zukünftig der DFG-geförderten Klinischen Forschergruppe "Die Bedeutung von Biomechanik und Calciumstoffwechsel bei Herzinsuffizienz und Regeneration" angegliedert. Sprecher der seit November 2006 arbeitenden Gruppe aus derzeit acht Teilprojekten ist Prof. Dr. Gerd Hasenfuß.

Herzschwäche ist meist die Folge einer Krankheit wie Bluthochdruck, einer Entzündung des Herzens oder eines angeborenen Herzfehlers. Diese Krankheiten "stressen" und schwächen das Herz. Seine Pumpschwäche versucht das Herz durch vermehrtes Muskelwachstum auszugleichen. Ein größerer Muskel, so die "Hoffnung des Herzens", sollte das Blut kräftiger pumpen können. Leider hinkt dabei die Bildung neuer Blutgefäße hinterher. Dem vergrößerten Herzmuskel "geht die Luft aus", was den Stress verstärkt.

Seit vielen Jahren untersucht Prof. Dr. Dörthe Katschinski auf molekularer Ebene die Vorgänge, die bei Sauerstoff-Unterversorgung im Körper ablaufen. So ist inzwischen viel darüber bekannt, welche Signalwege nach einem Schlaganfall im Gehirn oder in schnell wachsenden Tumoren aktiv werden. Zusammen mit dem Mediziner und Spezialist für die Erforschung von chronischem Herzversagen, Dr. Harald Kögler, möchte Katschinski nun untersuchen, welche Signale das Wachstum des Herzmuskels bei Sauerstoffmangel fördern. "Wir hoffen, zukünftig die beteiligten Signale so beeinflussen zu können, dass sich mehr Blutgefäße entwickeln und dadurch das Herzmuskelgewebe geschützt wird", sagt Katschinski.

WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen, Georg-August-Universität
Abteilung Klinische Neurophysiologie
Prof. Dr. Dörthe Katschinski, Telefon 0551/39-9778
katschinski@physiol.med.uni-goettingen.de
Humboldtallee 23, 37073 Göttingen
Abteilung Kardiologie und Pneumologie
Dr. Harald Kögler, Telefon 0551/39-6380
hkogler@med.uni-goettingen.de
Robert-Koch-Straße 40, 37075 Göttingen

Stefan Weller | idw
Weitere Informationen:
http://www.universitaetsmedizin-goettingen.de/

Weitere Berichte zu: Blutgefäß Herzmuskel Herzversagen Kardiologie

Weitere Nachrichten aus der Kategorie Bildung Wissenschaft:

nachricht Weiterbildung – für die Arbeitswelt von morgen unerlässlich!
15.02.2018 | Bundesinstitut für Berufsbildung (BIBB)

nachricht Roboter als Förderer frühkindlicher Bildung – Neues Forschungsprojekt an der Uni Paderborn
07.02.2018 | Universität Paderborn

Alle Nachrichten aus der Kategorie: Bildung Wissenschaft >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics