Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzlich verstärkte Autoreifen in Sicht

27.07.2009
Zusatz von mikrokristalliner Zellulose verspricht hochwertige Produkte

Untersuchungen der Oregon State University (OSU) zufolge eignet sich mikrokristalline Zellulose (MCC) bestens als stabilisierender Füllstoff in der Autoreifenproduktion. Die befassten Wissenschafter haben den Gummi verstärkenden Füllstoff Kieselerde teilweise mit MCC ersetzt.

In mehreren Testverfahren hat sich abgezeichnet, dass die durch Beimischung des aus Pflanzenfasern herstellbaren Materials produzierten Reifen in qualitativer Hinsicht mit marktüblichen Produkten mehr als nur mithalten können. "Die ersten Resultate sind so vielversprechend, dass dies zu einer neuen Ära in der Produktion von Autoreifen führen könnte", sagt Kaichang Li, Professor für Holz- und Ingenieurswissenschaften an der OSU.

Ein Ziel ist die Senkung des Rollwiderstands durch Materialverbesserungen, was zu einem geringeren Kraftstoffverbrauch führt. Etwa ein Fünftel des Verbrauchs von Kraftfahrzeugen ginge direkt auf das Phänomen des Rollwiderstands zurück, heißt es unter Experten. Vor Jahren ersetzten Reifenproduzenten zu diesem Zweck Kohlenschwarz, einen industriell hergestellten Ruß, der bei der Verbrennung von schweren Petroleumprodukten entsteht und den Reifen ihre schwarze Farbe verleiht, zum Teil mit silikatischen Füllstoffen wie Kieselerde. Der Rollwiderstand ließe sich durch die Beimengung von MCC weiter verringern. Obendrein sei weniger Energie nötig, um das Materialgemisch aus Gummi, Kieselerde und MCC zu verbinden, so die Wissenschafter aus dem amerikanischen Nordwesten, deren Zellulosereifen obendrein verbesserte Werte für Hitzebeständigkeit und Spannkraft aufweisen würden.

Auch ein zentraler Faktor für die Beurteilung von Reifenperformanz ist die Traktion, also die Fähigkeit eines Automobils Antriebskraft in Vortrieb bzw. Beschleunigung umzusetzen. Die mit zwölf Prozent MCC angereicherten Reifen sollen auf nassem Untergrund vergleichbare Werte erzielt, sich als ebenso widerstandsfähig erwiesen und bei warmen Wetter zu einem geringeren Kraftstoffverbrauch als traditionelle Produkte geführt haben.

MCC kann aus Pflanzenfasern gewonnener Zellulose durch Hydrolyse kostengünstig hergestellt werden. Dabei wird die Pflanzen-Zellulose mit verdünnter Salzsäure bei Temperaturen von über 100 Grad von nicht-kristallinen Zellulose-Anteilen befreit. Mikrokristalline Zellulose weist als besonders reiner Stoff eine extrem geordnete Molekularstruktur auf. Von Seiten der Universität von Oregon wird jedoch betont, dass weit mehr an Forschung nötig sei, um die Langlebigkeit so produzierter Fahrzeugreifen zu prüfen.

Nikolaus Summer | pressetext.austria
Weitere Informationen:
http://oregonstate.edu

Weitere Nachrichten aus der Kategorie Automotive:

nachricht Leuchtende Mikropartikel unter Extrembedingungen
28.02.2017 | Otto-von-Guericke-Universität Magdeburg

nachricht IHP-Forschungsteam verbessert Zuverlässigkeit beim automatisierten Fahren
22.02.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie