Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Werkstoffe für Luftfahrt und Automobilbau - leichter, schneller, sicherer und kostengünstiger

07.10.2004


Das neue Verbundfasertechnikum der Uni Stuttgart zählt zu den weltweit modernsten Anlagen


Faserverbundwerkstoffe sind bis zu 25 Prozent leichter als Aluminium und 60 Prozent leichter als vergleichbare Stahlstrukturen: sie machen Großflugzeuge wie den neuen Airbus A 380 leichter, schneller, sicherer, ökologisch verträglicher und kostengünstiger - und werden zunehmend auch für die Automobilindustrie interessant. Der Trick bei diesen modernen Verbundwerkstoffen aus hochfesten Kohlefasern ist, alte Textiltechniken wie Nähen, Flechten oder Stricken mit neuen Entwicklungen wie Harzinjek-tionstechniken oder Mikrowellenhärtung zu kombinieren. Auf diese Weise kommen die beiden Disziplinen Flugzeugbau und Textiltechnik zusammen, die auf den ersten Blick nur wenig Berührungspunkte haben. Nun gilt es, die neuen Techniken für die Serienfertigung zu optimieren. Neben der Weiterentwicklung der Forschung ist dies eine der Aufgaben des neuen Faserverbundtechnikums, das in Zusammenarbeit des Instituts für Flugzeugbau der Universität Stuttgart mit mittelständischen Firmen entstanden ist. "Das Technikum zählt zu den weltweit modernsten Anlagen dieser Art", betonte Prof. Klaus Drechsler, Direktor des Instituts für Flugzeugbau, am 7. Oktober bei der Vorstellung der neuen Einrichtung im Verfügungsgebäude auf dem Uni-Campus in Vaihingen. "Das mit einer NC-Nähanlage, einer neuartigen Flechtmaschine, einem Nähroboter und einer Mikrowelleninjektions- und -härtungsanlage ausgestattete Technikum bietet eine exzellente Grundlage für die Lehre, die Forschung und für die Einwerbung von Drittmittelprojekten", hob Prof. Drechsler hervor. Bereits vor dem offiziellen Start sind von der Europäischen Union und dem Bundesforschungsministerium finanzierte Projekte angelaufen. Neben der Weiterentwicklung der Technologien in enger Zusammenarbeit mit Textilmaschinen- und Textilwarenherstellern, Endanwendern und Forschungsinstituten legt Prof. Drechsler großen Wert darauf, die Grundlagen dem Ingenieurnachwuchs in der Lehre zu vermitteln.

Vom Segler "Phönix" bis zum Airbus


Faserverstärkte Kunststoffe haben in den letzten 40 Jahren immer mehr Anwendungsfelder im Flugzeugbau gefunden. Schon 1958 bauten Ingenieure der damaligen Technischen Hochschule Stuttgart mit dem "Phönix" das erste Segelflugzeug aus glasfaserverstärktem Kunststoff und gehörten damit zu den Pionieren auf diesem Gebiet. Heute bestehen fast alle Hochleistungssegelflugzeuge aus faserverstärkten Kunststoffen und Deutschland hat sich zur führenden Nation im Segelflugzeugbau entwickelt.

Im Verkehrsflugzeugbau haben Airbus und Eurocopter eine Vorreiterrolle der neuen Technologie übernommen: 1980 flog mit der A 300 das erste Großraumflugzeug mit einem kohlefaserverstärkten Leitwerk und 2005 soll der A 380 abheben. Das hintere Ende der Kabine dieses "Riesen der Lüfte" mit 73 Metern Länge und 80 Metern Spannweite, die Druckkalotte mit über sechs Metern Durchmesser, auf der beim Flug der gesamte Innendruck lastet, besteht aus einem mit modernen Nähverfahren hergestellten Faserverbundwerkstoff. Eingesetzt werden diese modernen Werkstoffe nicht nur im Flugzeugbau, sondern auch für zahlreiche Sportartikel sowie zunehmend auch im Automobilbau.

Von parallelen Fasern bis zu mehrdimensionalen Geweben

Basis der modernen Hochleistungswerkstoffe ist die so genannte Prepreg-Technologie, bei der Verstärkungsfasern parallel angeordnet und bis zur gewünschten Stärke aufeinander geschichtet wurden. Die Integration in die entsprechenden Bauteile und die weitere Verarbeitung waren aufwändig, teuer und zu großen Teilen Handarbeit. Bei der am Institut für Flugzeugbau mit entwickelten Technik werden nun mit Hilfe von Textiltechniken wie Nähen, Weben, Flechten und Sticken automatisiert mehrdimensional belastbare Gewebe hergestellt, die im Bauteil zu einer höheren Strukturintegrität, besserer Schadenstoleranz und höherem Energieaufnahmevermögen im Crashfall führen. Die trockenen Faserstrukturen werden anschließend mit verschiedenen Injektionsverfahren, beispielsweise mit Expoxidharz, imprägniert. Sehr gute Erfahrungen haben die Stuttgarter Wissenschaftler mit einem Verfahren gemacht, bei dem der textile "Vorformling" auf eine Werkzeugschale aufgelegt und mit einer Vakuumfolie das Harz verteilt und ausgehärtet wird. Eine halb durchlässige Membran sorgt dafür, dass die Luft großflächig entweichen und die Harzmenge genau kontrolliert werden kann. Und bereits bei der Fertigung können Sensoren integriert werden, die den Werkstoff beim Einsatz auf Schäden oder Ermüdung kontrollieren.

Fragen zum Recycling und Reparaturkonzept im Automobilbau

Vor dem Einsatz dieser neuen Werkstoffsysteme und Fertigungsverfahren im Flugzeugbau müssen aufwändige und langwierige Prozesse durchlaufen werden von Prüfprogrammen zur Qualifizierung, Abläufen zur Zulassung oder Berechnungen zur Bauteilauslegung. Insofern erstaunt es nicht, dass bis zur Serienfertigung textilverstärkter Verbundwerkstoffe rund 20 Jahre vergingen. Beim Hubschrauberbau werden solche Werkstoffe erstmals für den Rumpfspant des Transporthubschraubers NH 90 eingesetzt. Das Automatisierungspotential und die hohe Strukturintegrität dieser Verbundwerkstoffe sind auch die Schlüssel für die Nutzung im Automobilbau. Vor der Großserienfertigung müssen jedoch noch Fragen zum Recycling und zum Reparaturkonzept geklärt werden. In jedem Fall können Fertigungszeiten deutlich verkürzt und Kosten reduziert werden. Mercedes hat das Potential der Textiltechnik vom Automatisierungsgrad bis zur Energieabsorption bereits mit den Crashelementen des Supersportwagens SLR aufgezeigt.

Fachkolloquium

Bei einem Fachkolloquium aus Anlass der Einweihung am Freitag, den 8. Oktober, geben Fachleute aus Industrie und Wissenschaft Einblick in aktuelle Arbeiten. Unter anderem wird Dr. Jürgen Brandt von der EADS Forschung in Ottobrunn über "Zwanzig Jahre Textiltechnik für Faserverbundwerkstoffe" berichten, Dr. Christian Weimer von Eurocopter "Textile Faserverbundwerkstoffe im Hubschrauberbau" und Dr. Thomas Bischoff von der Saertex Stade GmbH "Die genähte Druckkalotte des Airbus A 380" vorstellen. Anschließend informieren Mitarbeiter der Volkswagen AG über "Leichtbaupotentiale mit Faser-Kunststoff-Verbunden im Automobilbau". Weitere Themen betreffen Technologien für den Airbus der Zukunft oder Informationen zur Entwicklung textiler Verbundwerkstoffe in den USA. Angemeldet haben sich rund 150 Teilnehmer aus Deutschland, Österreich, der Schweiz, Belgien und den Niederlanden. Vertreten sind, neben der Luft- und Raumfahrtindustrie, fast alle deutschen Automobilfirmen, mittelständische Unternehmen aus dem Textilmaschinen- und Zuliefererbereich sowie Forschungsinstitute und -ministerien. Das Kolloquium findet von 9.30 Uhr bis ca. 15.00 Uhr im Hörsaal 57.02 (Vaihingen, Pfaffenwaldring 57) statt. Ab 15.15 Uhr können die Gäste das neue Technikum und die Anlagen in Augenschein nehmen.

Weitere Informationen am Institut für Flugzeugbau, Tel. 0711/685-2402, Fax 0711/685-2429, e-mail: drechsler@ifb.uni-stuttgart.de sowie unter www.ifb.uni-stuttgart.de.

Ursula Zitzler | idw
Weitere Informationen:
http://www.ifb.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Automotive:

nachricht Leuchtende Mikropartikel unter Extrembedingungen
28.02.2017 | Otto-von-Guericke-Universität Magdeburg

nachricht IHP-Forschungsteam verbessert Zuverlässigkeit beim automatisierten Fahren
22.02.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise