Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Dicke Luft“ in Städten: Helle Fassaden und Bäume gegen Hitze und Smog

13.05.2015

Städte bilden „Wärmeinseln“ gegenüber dem Umland, da hier viele Wärmequellen und geringe Luftbewegungen aufeinandertreffen. Abhilfe können wie in Südeuropa helle Gebäude schaffen, die für ein kühleres Stadtklima sorgen. Doch in Simulationsrechnungen haben KIT-Forscher nun am Beispiel Stuttgart gezeigt, dass solche Maßnahmen zur Kühlung die Luftqualität am Boden verschlechtern können. Die Lösung der Forscher: Helle Fassaden zur Kühlung und das Pflanzen ganz bestimmter Baumarten zur Verringerung der Schadstoffbelastung.

Forscher des Instituts für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU) des Karlsruher Instituts für Technologie (KIT) in Garmisch-Partenkirchen haben eine neue Simulationsstrategie entwickelt, welche die Temperaturentwicklung in Städten und den Transport von Schadstoffen gemeinsam betrachtet.


Modellrechnungen zu Temperaturen im Stadtgebiet Stuttgart. Durch ihre Kessellage ist die Stadt sehr interessant für Modellrechnungen zum Stadtklima. (Grafik: Joachim Fallmann, KIT)

Am Beispiel der Hitzewelle von 2003 wurde das Stadtklima von Stuttgart unter verschiedenen Bedingungen simuliert. „Durch ihre Lage im Kessel ist die Stadt Stuttgart sehr interessant für Modellrechnungen zum Stadtklima“, erklärt Joachim Fallmann vom IMK-IFU, der an der Modellentwicklung beteiligt war.

Er hat verschiedene Szenarien simuliert, etwa in denen die Gebäude Stuttgarts aufgrund ihrer Farbe mehr Strahlung reflektieren. Weiße Häuser sind eine traditionelle Strategie gegen städtische Aufheizung im Mittelmeerraum. Joachim Fallmann erklärt diese Eigenschaft namens Albedo:

„Je heller die Gebäude und Oberflächen in einer Stadt sind, desto geringer ist die Aufheizung, weil kurzwellige Strahlung reflektiert wird und das Material nicht erwärmen kann. Dann sprechen wir von einer hohen Albedo. Typische graue Hochhäuser haben dagegen eine geringe Albedo und sind regelrechte Wärmefänger.“ Der neue Modellansatz konnte bestätigen, dass hellere Gebäude tatsächlich geeignet sind, der Wärmeinsel entgegenzuwirken.

Doch was die Luftqualität angeht, hat diese Strategie einen überraschenden Haken: „Wenn es kühler wird, ist die vertikale Durchmischung der Luft weniger stark. So halten sich Feinstaub und Schadstoffe wie Stickoxide näher am Boden und sind stärker konzentriert als in einer wärmeren Stadt.“

Besonders für Einwohner in Städten mit ausgeprägten primären Schadstoffquellen wie Industriequartieren oder besonders dichtem Verkehr hätte der Kühleffekt also auch eine schwerwiegende Schattenseite. Im Fall anderer, sogenannter sekundärer Schadstoffe ist der Effekt wiederum positiv: „Wenn es kühler ist, bildet sich weniger schnell Ozon, das am Boden schädlich für die Atemwege sein kann.“ Die Atmosphärenchemie und die Wärmeentwicklung in einer Stadt müssen deshalb gemeinsam betrachtet werden.

Mehr Grün in der Stadt ist eine Strategie, die den Effekt des verringerten Lufttransports ausgleichen kann. Bäume nehmen CO2 auf und können an ihrer Oberfläche sogar Feinstaub binden. Doch auch hier sind Details entscheidend, wie Joachim Fallmann erklärt: „Es müssen auch die richtigen Bäume zum Einsatz kommen. Vor allem Pappeln, Eichen und Platanen zählen zu Produzenten von biogenen Stoffen wie Pollen, welche wiederum Vorläuferstoffe zur Bildung von Ozon abgeben können.“ Ein für die Luftqualität vorteilhafter Baum wäre in diesem Sinne etwa der Ahorn.

Um den komplexen Zusammenhängen weiter auf den Grund zu gehen, ist das Modell des IMK-IFU ein wichtiges Werkzeug. Letztlich, so Joachim Fallmann, muss jede Stadt individuell betrachtet werden: „Stuttgart hat ganz andere Voraussetzungen als beispielsweise München, wo die Alpen häufig Frischluft liefern. Unser Ziel ist, das Simulationsmodell so zu verfeinern, dass es maßgeschneiderte Lösungen für verschiedene Städte zuverlässig überprüfen kann.“

Das IMK-IFU kooperiert mit dem Stuttgarter Amt für Umweltschutz, wo die Anwendbarkeit der Studien in der Stadtplanung diskutiert wird, sowie dem Institute of Advanced Sustainability Studies (IASS) in Potsdam. Dort laufen im Moment ausführliche Kampagnen für die Stadt Berlin. Zudem ist das IMK-IFU in einem Europäischen Konsortium namens „Green Infrastructure“ involviert, das die Auswirkung von Stadtvegetation auf die Luftqualität für verschiedene europäische Städte untersuchen wird.

Das Karlsruher Institut für Technologie (KIT) vereint als selbstständige Körperschaft des öffentlichen Rechts die Aufgaben einer Universität des Landes Baden-Württemberg und eines nationalen Forschungszentrums in der Helmholtz-Gemein-schaft. Seine Kernaufgaben Forschung, Lehre und Innovation verbindet das KIT zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: www.kit.edu

Das Foto steht in druckfähiger Qualität auf www.kit.edu zum Download bereit und kann angefordert werden unter: presse@kit.edu oder +49 721 608-47414. Die Verwendung des Bildes ist ausschließlich in dem oben genannten Zusammenhang gestattet.

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Smarte Gebäude durch innovative Dächer und Fassaden
31.08.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Nachhaltiger Baustoff: Pilze als Dämmmaterial nutzen
30.08.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik