Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Retrotransposons blähen pflanzliche Genome auf

19.12.2012
Transponsible Elemente (TEs) werden auch als „springende Elemente“ bezeichnet.

Dabei springt eine Klasse von TEs, die Retrotransposons, gar nicht wirklich im Genom umher. Sie bilden Kopien, die sich wiederum im Genom integrieren. Pflanzengenome bestehen zu einem Großteil aus Retrotransposons. Diese zu kennen ist wichtig, wenn es darum geht, Genomsequenzen zu annotieren, d.h. sie zu interpretieren und ihnen eine Funktion zuzuordnen.

Retrotransposons, auch Retroelemente genannt, sind wichtig für die Aufrechterhaltung der Struktur, der Funktion und der Evolution des Genoms. Sie sind eine Quelle der pflanzlichen Biodiversität. Je nachdem, ob die Retrotransposons an ihren Enden repetitive Sequenzen aufweisen, unterscheidet man zwischen LTR (long terminal repeat)-Retrotransposons und non-LTR-Retrotransposons. Beide Subklassen vermehren sich, indem sie ihre mRNA in eine DNA-Kopie umschreiben, die sie in andere Stellen des Genoms integrieren.

So nehmen die Kopien eines Retrotransposons innerhalb eines Genoms stetig zu und mit ihnen die Größe des Wirts-Genoms. Vor allem pflanzliche Genome neigen dazu, zahlreiche Kopien von Retroelementen anzuhäufen. Im Mais beispielsweise machen LTR-Retrotransposons fast 75% des gesamten Genoms aus. Auch im Weizen- und Gerstegenom und in vielen anderen Pflanzengenomen kommen Retrotransposons in erheblichem Umfang vor. Damit sind Retrotransposons, neben Genomverdopplungen (Polyploidisierung), die Ursache für die enormen Größenunterschiede pflanzlicher Genome.

„Pflanzen haben verschiedenen Mechanismen entwickelt, wie sie diese mobilen Sequenzen ruhig halten“, erklärt Prof. Dr. Thomas Schmidt vom Institut für Botanik der Technischen Universität in Dresden. Ansonsten könnten Pflanzen wegen der zahlreichen Retrotransposons und dem damit verbundenen mutagenen Potenzial in ihrem Genom überhaupt nicht überleben. Bei diesen Mechanismen handelt es sich entweder um epigenetische Prozesse, wie beispielsweise die Methylierung oder Heterochromatisierung bestimmter DNA-Abschnitte, oder auch um Deletionen und Mutationen in Retrotransposons, die zu ihrer Inaktivierung führen.
Schmidt und seine Arbeitsgruppe nahmen eine ganz bestimmte Klasse der LTR-Retrotransposons unter die Lupe, nämlich nur diejenigen, die neben den üblichen Retroelement-typischen Genen auch ein zelluläres Gen integriert hatten. „Damit bestünde die Möglichkeit, dass die LTR-Retrotransposons zelluläre Informationen weiterverbreiten könnten“, so Schmidt. Dabei handele es sich aber meist nicht um ein komplettes, funktionelles Gen, sondern nur um ein Bruchstück davon. Untersuchten die Wissenschaftler diese Genbruchstücke innerhalb der LTR-Retrotransposons mit bioinformatischen Methoden auf mögliche Proteine, die in diesen Sequenzen kodiert sein könnten, stießen sie auffällig häufig auf eine Ähnlichkeit zu retroviralen Membranproteinen.

Eigentlich gibt es in Pflanzen keine Retroviren, da sie sich aufgrund der äußerst stabilen und undurchdringbaren Zellwand nicht weiterverbreiten können und deshalb nicht infektiös sind. In den LTR-Retrotransposons mit integriertem zellulärem Genabschnitt sehen die Forscher um Schmidt eine mögliche evolutionäre Zwischenstufe zwischen den LTR-Retrotransposons und den echten Retroviren. Die Arbeitsgruppe konnte außerdem zeigen, dass die zahlreichen LTR-Retrotransposons im Genom der Zuckerrübe (Beta vulgaris) miteinander stark rekombinieren, also einzelne Abschnitte einzelner Elemente untereinander ausgetauscht werden. So entstehen immer wieder neue Varianten, die sich erneut vermehren und das Genom wachsen lassen. „Gene sind Inseln im Meer von Retrotransposons und Transposons“, fassen Genomforscher diese Strukturen bildhaft zusammen. Und gerade bei Pflanzen sei es äußerst wichtig, die verschiedenen Retrotransposons und Transposons zu kennen. Denn nur so kann man bei den enorm zahlreichen pflanzlichen Genom-Sequenzdaten den einzelnen Sequenzbereichen eine Funktion und damit auch eine Bedeutung zuordnen. Die vorliegenden Arbeiten erfolgen im Verbundprojekt „AnnoBeet“, das gegenwärtig vom BMBF in der Förderinitiative "Pflanzenbiotechnologie für die Zukunft“ (PLANT 2030) gefördert wird und die Annotation des Zuckerrübengenoms zum Ziel hat.

Quelle:

Wollrab C, et al. (2012): Evolutionary reshuffling in the Errantivirus lineage Elbe within the Beta vulgaris genome. Plant J. (November 2012);72(4):636-51.Epub 2012 Sep 24. doi: 10.1111/j.1365-313X.2012.05107.

Wollrab C, et al. | Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de/journal/aktuelles/retrotransposons-blaehen-pflanzliche-genome-auf?piwik_campaign=newsletter

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Klimawandel – die Tanne sticht Fichte und Buche aus
10.08.2017 | Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL

nachricht Feuerbrand bekämpfen und Salmonellen nachweisen
14.06.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie