Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biologische Trickkiste gegen Pflanzenschädlinge

29.10.2012
Ein Bakterium und ein Trick: Das ist alles was die Natur braucht, um biologisch ohne Einsatz von Pestiziden die Vermehrung von Insekten zu steuern.
Ein Team internationaler WissenschafterInnen rund um Matthias Horn, Professor für Mikrobiologe an der Universität Wien, haben eine Liste an Faktoren vorgeschlagen, die an dem komplexen Prozess der Fortpflanzungsmanipulation durch Bakterien beteiligt sein könnten. Ihre Ergebnisse publizieren sie in der aktuellen Ausgabe des Fachmagazins PLoS Genetics.

Insekten haben nahezu jeden Lebensraum erobert und sind die artenreichste Gruppe der Tierwelt. Weniger bekannt ist, dass zwei Drittel der über eine Million Insektenarten mit Bakterien der Gattungen Wolbachia oder Cardinium infiziert sind. Eine beindruckende Überlebensstrategie macht diese Mikroorganismen so erfolgreich.
Bakterielle Symbionten parasitischer Wespen
Das System mit dem sich die Mikrobiologen rund um Matthias Horn vom Department für Mikrobielle Ökologie der Universität Wien und die Gruppe um die Entomologin Martha S. Hunter von der Universität von Arizona (USA) beschäftigen, ist ein sehr komplexes. "Die stachellose Schlupfwespe Encarsia pergandiella, die kaum einen Millimeter misst und weniger als ein Tausendstel einer Fruchtfliege der Gattung Drosophila wiegt, ist der Wirt des Bakteriums Cardinium hertigii", erklärt Thomas Penz, Doktorand am Department für Mikrobielle Ökologie der Universität Wien und Erstautor der Studie. "Encarsia Wespen legen ihre Eier in juvenile Stadien von Schildläusen, und ihre Larven entwickeln sich darin", ergänzt Stephan Schmitz-Esser, Postdoc in Horns Gruppe und jetzt wissenschaftlicher Mitarbeiter an der Veterinärmedizinischen Universität Wien. Parasitierte Schildläuse sterben meist. In der Folge führt dies zu einer erheblichen Reduktion der Schildläuse, die als weit verbreitete Pflanzenschädlinge bekannt sind.
Übertragung über Eizellen
Hunter entdeckte im Jahr 2001, dass die Infektion der Encarsia Wespen mit Cardinium einen Einfluss auf die Fortpflanzung der Insekten hat. Paart man uninfizierte Insektenweibchen mit infizierten Insektenmännchen, bleibt der Nachwuchs aus. Ein solcher Effekt wurde zuvor nur bei Bakterien der Gattung Wolbachia beobachtet. Bakterien der Gattungen Cardinium und Wolbachia werden über die Eizellen der Weibchen von einer Generation zur nächsten weitergegeben und sind nicht in den Spermien der Männchen zu finden. Aufgrund dieses maternalen Übertragungswegs ist es für die Überlebensstrategie dieser Bakterien von größter Bedeutung, eine möglichst große Anzahl an (infizierten) Weibchen in einer Insektenpopulation zu erzielen.
Der Trick – zytoplasmatische Inkompatibilität
Um ihren Fortbestand zu garantieren, greifen die Bakterien der Gattungen Cardinium und Wolbachia in die Trickkiste und bewirken mit einem Vorgang, der als "zytoplasmatische Inkompatibilität" bezeichnet wird, dass sich ausschließlich infizierte Weibchen fortpflanzen. Die Fortpflanzung von nicht infizierten Insektenweibchen mit infizierten Insektenmännchen würde nicht zu infizierten Nachkommen führen und wird deshalb verhindert. Dabei produzieren die Bakterien Faktoren, die die normale embryonale Entwicklung der Insekten stören. Diese Faktoren und der genaue Mechanismus der zytoplasmatischen Inkompatibilität waren bisher weitgehend unbekannt.

Neue Einblicke durch vergleichende Untersuchung des Erbguts von Cardinium
Das Cardinium-Encarsia-Schildlaus-System ist experimentell sehr schwer zugänglich. Wie das Forschungsteam letztendlich erfolgreich war, erklärt Matthias Horn, Professor am Institut für Mikrobielle Ökologie der Universität Wien, folgendermaßen: "Um an Cardinium Bakterien zu gelangen, werden im Labor Pflanzen gezüchtet, die als Nahrungsquelle der Schildläuse dienen. Diese wiederum sind Lebensgrundlage der winzigen Encarsia Wespen, in denen Cardinium lebt. Es dauerte über ein Jahr, um einige Cardinium Bakterien zu gewinnen. Mit Hilfe einer modernen Methode vervielfältigte man das Erbgut der Bakterien künstlich, sodass man genügend Material für die Erbgutentschlüsselung erhielt – ein aufwendiger Prozess, den das Joint Genome Institute (JGI) des U.S.-amerikanischen Energieministeriums (DoE) übernahm."

Durch die Entschlüsselung des Erbgutes von Cardinium und den Vergleich mit dem von Wolbachia, gelang es den WissenschafterInnen, eine Liste an Faktoren vorzuschlagen, welche an dem komplexen Prozess der zytoplasmatischen Inkompatibilität beteiligt sein könnten. Zudem gewannen die Forscher neue Einblicke in die Evolution von Cardinium. So konnten sie zeigen, dass die Vorfahren von Cardinium innerhalb von Einzellern gelebt haben.

Eine biologische, pestizidfreie Schädlingsbekämpfung
Den Effekt der zytoplasmatischen Inkompatibilität kann man sich in der Schädlingsbekämpfung zu Nutze machen. Überträgt man Wolbachia auf Insekten, an die sie nicht angepasst sind, führt dies zu einer generell verringerten Nachkommenschaft. Auch die Übertragung von Krankheiten wie Malaria oder Denguefieber durch Insekten kann auf diese Weise gehemmt werden. Die Untersuchung von Cardinium und Wolbachia und der der zytoplasmatischen Inkompatibilität zugrunde liegenden Mechanismen eröffnet neue Wege zur biologischen, pestizidfreien Schädlingsinsektenbekämpfung und zur Eindämmung der Übertragungswege von Krankheiten. Diese Methode bietet einen entscheidenden Vorteil: Cardinium und Wolbachia sind schon seit Millionen von Jahren Bestandteil der Natur und ungefährlich für Mensch, Tier und Pflanzen.
Bis es soweit ist, wird jedoch noch einige Zeit vergehen. Derzeit arbeitet neben den Autoren dieser Studie eine ganze Reihe internationaler Forschergruppen daran, die Mechanismen der zytoplasmatischen Inkompatibilität besser zu verstehen. Die durch die Untersuchung von Cardinium gewonnenen Ergebnisse sind ein bedeutender Schritt in diese Richtung.

Die publizierte Arbeit ist ein Beitrag zum Forschungsschwerpunkt "Symbiosis" an der Fakultät für Lebenswissenschaften. Die Forschungsarbeit wurde unter anderem durch das START-Programm des FWF finanziert und ist eine Zusammenarbeit des Departments für Mikrobielle Ökologie mit der University of Arizona, dem Joint Genome Institute und der Veterinärmedizinischen Universität Wien.

Publikation in PLoS Genetics
Penz T, Schmitz-Esser S, Kelly SE, Cass BN, Müller A, Woyke T, Malfatti SE, Hunter MS, Horn M. 2012. Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. PLoS Genetics, in press.

Die Schlupfwespe Encarsia pergandiella, der natürliche Wirt von Cardinium hertigii, bei der Eiablage in eine Schildlaus. Foto: Alexander Wild, Copyright: Department für Mikrobielle Ökologie der Universität Wien

http://www.plosgenetics.org/doi/pgen.1003012

Wissenschaftlicher Kontakt
Univ.-Prof. Dr. Matthias Horn
Universität Wien
Department für Mikrobielle Ökologie
1090 Wien, Althanstraße 14
T +43 1 4277 543 93
horn@microbial-ecology.net

Rückfragehinweis
Mag.a Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Julius Kühn-Institut etabliert Forschungszentrum für landwirtschaftliche Fernerkundung (FLF)
22.03.2017 | Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen

nachricht Im Drohnenflug dem Wasser auf der Spur
03.03.2017 | Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V.

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit