Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biologische Trickkiste gegen Pflanzenschädlinge

29.10.2012
Ein Bakterium und ein Trick: Das ist alles was die Natur braucht, um biologisch ohne Einsatz von Pestiziden die Vermehrung von Insekten zu steuern.
Ein Team internationaler WissenschafterInnen rund um Matthias Horn, Professor für Mikrobiologe an der Universität Wien, haben eine Liste an Faktoren vorgeschlagen, die an dem komplexen Prozess der Fortpflanzungsmanipulation durch Bakterien beteiligt sein könnten. Ihre Ergebnisse publizieren sie in der aktuellen Ausgabe des Fachmagazins PLoS Genetics.

Insekten haben nahezu jeden Lebensraum erobert und sind die artenreichste Gruppe der Tierwelt. Weniger bekannt ist, dass zwei Drittel der über eine Million Insektenarten mit Bakterien der Gattungen Wolbachia oder Cardinium infiziert sind. Eine beindruckende Überlebensstrategie macht diese Mikroorganismen so erfolgreich.
Bakterielle Symbionten parasitischer Wespen
Das System mit dem sich die Mikrobiologen rund um Matthias Horn vom Department für Mikrobielle Ökologie der Universität Wien und die Gruppe um die Entomologin Martha S. Hunter von der Universität von Arizona (USA) beschäftigen, ist ein sehr komplexes. "Die stachellose Schlupfwespe Encarsia pergandiella, die kaum einen Millimeter misst und weniger als ein Tausendstel einer Fruchtfliege der Gattung Drosophila wiegt, ist der Wirt des Bakteriums Cardinium hertigii", erklärt Thomas Penz, Doktorand am Department für Mikrobielle Ökologie der Universität Wien und Erstautor der Studie. "Encarsia Wespen legen ihre Eier in juvenile Stadien von Schildläusen, und ihre Larven entwickeln sich darin", ergänzt Stephan Schmitz-Esser, Postdoc in Horns Gruppe und jetzt wissenschaftlicher Mitarbeiter an der Veterinärmedizinischen Universität Wien. Parasitierte Schildläuse sterben meist. In der Folge führt dies zu einer erheblichen Reduktion der Schildläuse, die als weit verbreitete Pflanzenschädlinge bekannt sind.
Übertragung über Eizellen
Hunter entdeckte im Jahr 2001, dass die Infektion der Encarsia Wespen mit Cardinium einen Einfluss auf die Fortpflanzung der Insekten hat. Paart man uninfizierte Insektenweibchen mit infizierten Insektenmännchen, bleibt der Nachwuchs aus. Ein solcher Effekt wurde zuvor nur bei Bakterien der Gattung Wolbachia beobachtet. Bakterien der Gattungen Cardinium und Wolbachia werden über die Eizellen der Weibchen von einer Generation zur nächsten weitergegeben und sind nicht in den Spermien der Männchen zu finden. Aufgrund dieses maternalen Übertragungswegs ist es für die Überlebensstrategie dieser Bakterien von größter Bedeutung, eine möglichst große Anzahl an (infizierten) Weibchen in einer Insektenpopulation zu erzielen.
Der Trick – zytoplasmatische Inkompatibilität
Um ihren Fortbestand zu garantieren, greifen die Bakterien der Gattungen Cardinium und Wolbachia in die Trickkiste und bewirken mit einem Vorgang, der als "zytoplasmatische Inkompatibilität" bezeichnet wird, dass sich ausschließlich infizierte Weibchen fortpflanzen. Die Fortpflanzung von nicht infizierten Insektenweibchen mit infizierten Insektenmännchen würde nicht zu infizierten Nachkommen führen und wird deshalb verhindert. Dabei produzieren die Bakterien Faktoren, die die normale embryonale Entwicklung der Insekten stören. Diese Faktoren und der genaue Mechanismus der zytoplasmatischen Inkompatibilität waren bisher weitgehend unbekannt.

Neue Einblicke durch vergleichende Untersuchung des Erbguts von Cardinium
Das Cardinium-Encarsia-Schildlaus-System ist experimentell sehr schwer zugänglich. Wie das Forschungsteam letztendlich erfolgreich war, erklärt Matthias Horn, Professor am Institut für Mikrobielle Ökologie der Universität Wien, folgendermaßen: "Um an Cardinium Bakterien zu gelangen, werden im Labor Pflanzen gezüchtet, die als Nahrungsquelle der Schildläuse dienen. Diese wiederum sind Lebensgrundlage der winzigen Encarsia Wespen, in denen Cardinium lebt. Es dauerte über ein Jahr, um einige Cardinium Bakterien zu gewinnen. Mit Hilfe einer modernen Methode vervielfältigte man das Erbgut der Bakterien künstlich, sodass man genügend Material für die Erbgutentschlüsselung erhielt – ein aufwendiger Prozess, den das Joint Genome Institute (JGI) des U.S.-amerikanischen Energieministeriums (DoE) übernahm."

Durch die Entschlüsselung des Erbgutes von Cardinium und den Vergleich mit dem von Wolbachia, gelang es den WissenschafterInnen, eine Liste an Faktoren vorzuschlagen, welche an dem komplexen Prozess der zytoplasmatischen Inkompatibilität beteiligt sein könnten. Zudem gewannen die Forscher neue Einblicke in die Evolution von Cardinium. So konnten sie zeigen, dass die Vorfahren von Cardinium innerhalb von Einzellern gelebt haben.

Eine biologische, pestizidfreie Schädlingsbekämpfung
Den Effekt der zytoplasmatischen Inkompatibilität kann man sich in der Schädlingsbekämpfung zu Nutze machen. Überträgt man Wolbachia auf Insekten, an die sie nicht angepasst sind, führt dies zu einer generell verringerten Nachkommenschaft. Auch die Übertragung von Krankheiten wie Malaria oder Denguefieber durch Insekten kann auf diese Weise gehemmt werden. Die Untersuchung von Cardinium und Wolbachia und der der zytoplasmatischen Inkompatibilität zugrunde liegenden Mechanismen eröffnet neue Wege zur biologischen, pestizidfreien Schädlingsinsektenbekämpfung und zur Eindämmung der Übertragungswege von Krankheiten. Diese Methode bietet einen entscheidenden Vorteil: Cardinium und Wolbachia sind schon seit Millionen von Jahren Bestandteil der Natur und ungefährlich für Mensch, Tier und Pflanzen.
Bis es soweit ist, wird jedoch noch einige Zeit vergehen. Derzeit arbeitet neben den Autoren dieser Studie eine ganze Reihe internationaler Forschergruppen daran, die Mechanismen der zytoplasmatischen Inkompatibilität besser zu verstehen. Die durch die Untersuchung von Cardinium gewonnenen Ergebnisse sind ein bedeutender Schritt in diese Richtung.

Die publizierte Arbeit ist ein Beitrag zum Forschungsschwerpunkt "Symbiosis" an der Fakultät für Lebenswissenschaften. Die Forschungsarbeit wurde unter anderem durch das START-Programm des FWF finanziert und ist eine Zusammenarbeit des Departments für Mikrobielle Ökologie mit der University of Arizona, dem Joint Genome Institute und der Veterinärmedizinischen Universität Wien.

Publikation in PLoS Genetics
Penz T, Schmitz-Esser S, Kelly SE, Cass BN, Müller A, Woyke T, Malfatti SE, Hunter MS, Horn M. 2012. Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. PLoS Genetics, in press.

Die Schlupfwespe Encarsia pergandiella, der natürliche Wirt von Cardinium hertigii, bei der Eiablage in eine Schildlaus. Foto: Alexander Wild, Copyright: Department für Mikrobielle Ökologie der Universität Wien

http://www.plosgenetics.org/doi/pgen.1003012

Wissenschaftlicher Kontakt
Univ.-Prof. Dr. Matthias Horn
Universität Wien
Department für Mikrobielle Ökologie
1090 Wien, Althanstraße 14
T +43 1 4277 543 93
horn@microbial-ecology.net

Rückfragehinweis
Mag.a Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Acht europäische Länder im Kampf gegen den Asiatischen Laubholzbockkäfer
06.01.2017 | Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL

nachricht Kleinbauern in Afrika: Clevere Milchkühlung – dank Solar auch ohne Stromanschluss
02.01.2017 | Universität Hohenheim

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie