Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biologische Trickkiste gegen Pflanzenschädlinge

29.10.2012
Ein Bakterium und ein Trick: Das ist alles was die Natur braucht, um biologisch ohne Einsatz von Pestiziden die Vermehrung von Insekten zu steuern.
Ein Team internationaler WissenschafterInnen rund um Matthias Horn, Professor für Mikrobiologe an der Universität Wien, haben eine Liste an Faktoren vorgeschlagen, die an dem komplexen Prozess der Fortpflanzungsmanipulation durch Bakterien beteiligt sein könnten. Ihre Ergebnisse publizieren sie in der aktuellen Ausgabe des Fachmagazins PLoS Genetics.

Insekten haben nahezu jeden Lebensraum erobert und sind die artenreichste Gruppe der Tierwelt. Weniger bekannt ist, dass zwei Drittel der über eine Million Insektenarten mit Bakterien der Gattungen Wolbachia oder Cardinium infiziert sind. Eine beindruckende Überlebensstrategie macht diese Mikroorganismen so erfolgreich.
Bakterielle Symbionten parasitischer Wespen
Das System mit dem sich die Mikrobiologen rund um Matthias Horn vom Department für Mikrobielle Ökologie der Universität Wien und die Gruppe um die Entomologin Martha S. Hunter von der Universität von Arizona (USA) beschäftigen, ist ein sehr komplexes. "Die stachellose Schlupfwespe Encarsia pergandiella, die kaum einen Millimeter misst und weniger als ein Tausendstel einer Fruchtfliege der Gattung Drosophila wiegt, ist der Wirt des Bakteriums Cardinium hertigii", erklärt Thomas Penz, Doktorand am Department für Mikrobielle Ökologie der Universität Wien und Erstautor der Studie. "Encarsia Wespen legen ihre Eier in juvenile Stadien von Schildläusen, und ihre Larven entwickeln sich darin", ergänzt Stephan Schmitz-Esser, Postdoc in Horns Gruppe und jetzt wissenschaftlicher Mitarbeiter an der Veterinärmedizinischen Universität Wien. Parasitierte Schildläuse sterben meist. In der Folge führt dies zu einer erheblichen Reduktion der Schildläuse, die als weit verbreitete Pflanzenschädlinge bekannt sind.
Übertragung über Eizellen
Hunter entdeckte im Jahr 2001, dass die Infektion der Encarsia Wespen mit Cardinium einen Einfluss auf die Fortpflanzung der Insekten hat. Paart man uninfizierte Insektenweibchen mit infizierten Insektenmännchen, bleibt der Nachwuchs aus. Ein solcher Effekt wurde zuvor nur bei Bakterien der Gattung Wolbachia beobachtet. Bakterien der Gattungen Cardinium und Wolbachia werden über die Eizellen der Weibchen von einer Generation zur nächsten weitergegeben und sind nicht in den Spermien der Männchen zu finden. Aufgrund dieses maternalen Übertragungswegs ist es für die Überlebensstrategie dieser Bakterien von größter Bedeutung, eine möglichst große Anzahl an (infizierten) Weibchen in einer Insektenpopulation zu erzielen.
Der Trick – zytoplasmatische Inkompatibilität
Um ihren Fortbestand zu garantieren, greifen die Bakterien der Gattungen Cardinium und Wolbachia in die Trickkiste und bewirken mit einem Vorgang, der als "zytoplasmatische Inkompatibilität" bezeichnet wird, dass sich ausschließlich infizierte Weibchen fortpflanzen. Die Fortpflanzung von nicht infizierten Insektenweibchen mit infizierten Insektenmännchen würde nicht zu infizierten Nachkommen führen und wird deshalb verhindert. Dabei produzieren die Bakterien Faktoren, die die normale embryonale Entwicklung der Insekten stören. Diese Faktoren und der genaue Mechanismus der zytoplasmatischen Inkompatibilität waren bisher weitgehend unbekannt.

Neue Einblicke durch vergleichende Untersuchung des Erbguts von Cardinium
Das Cardinium-Encarsia-Schildlaus-System ist experimentell sehr schwer zugänglich. Wie das Forschungsteam letztendlich erfolgreich war, erklärt Matthias Horn, Professor am Institut für Mikrobielle Ökologie der Universität Wien, folgendermaßen: "Um an Cardinium Bakterien zu gelangen, werden im Labor Pflanzen gezüchtet, die als Nahrungsquelle der Schildläuse dienen. Diese wiederum sind Lebensgrundlage der winzigen Encarsia Wespen, in denen Cardinium lebt. Es dauerte über ein Jahr, um einige Cardinium Bakterien zu gewinnen. Mit Hilfe einer modernen Methode vervielfältigte man das Erbgut der Bakterien künstlich, sodass man genügend Material für die Erbgutentschlüsselung erhielt – ein aufwendiger Prozess, den das Joint Genome Institute (JGI) des U.S.-amerikanischen Energieministeriums (DoE) übernahm."

Durch die Entschlüsselung des Erbgutes von Cardinium und den Vergleich mit dem von Wolbachia, gelang es den WissenschafterInnen, eine Liste an Faktoren vorzuschlagen, welche an dem komplexen Prozess der zytoplasmatischen Inkompatibilität beteiligt sein könnten. Zudem gewannen die Forscher neue Einblicke in die Evolution von Cardinium. So konnten sie zeigen, dass die Vorfahren von Cardinium innerhalb von Einzellern gelebt haben.

Eine biologische, pestizidfreie Schädlingsbekämpfung
Den Effekt der zytoplasmatischen Inkompatibilität kann man sich in der Schädlingsbekämpfung zu Nutze machen. Überträgt man Wolbachia auf Insekten, an die sie nicht angepasst sind, führt dies zu einer generell verringerten Nachkommenschaft. Auch die Übertragung von Krankheiten wie Malaria oder Denguefieber durch Insekten kann auf diese Weise gehemmt werden. Die Untersuchung von Cardinium und Wolbachia und der der zytoplasmatischen Inkompatibilität zugrunde liegenden Mechanismen eröffnet neue Wege zur biologischen, pestizidfreien Schädlingsinsektenbekämpfung und zur Eindämmung der Übertragungswege von Krankheiten. Diese Methode bietet einen entscheidenden Vorteil: Cardinium und Wolbachia sind schon seit Millionen von Jahren Bestandteil der Natur und ungefährlich für Mensch, Tier und Pflanzen.
Bis es soweit ist, wird jedoch noch einige Zeit vergehen. Derzeit arbeitet neben den Autoren dieser Studie eine ganze Reihe internationaler Forschergruppen daran, die Mechanismen der zytoplasmatischen Inkompatibilität besser zu verstehen. Die durch die Untersuchung von Cardinium gewonnenen Ergebnisse sind ein bedeutender Schritt in diese Richtung.

Die publizierte Arbeit ist ein Beitrag zum Forschungsschwerpunkt "Symbiosis" an der Fakultät für Lebenswissenschaften. Die Forschungsarbeit wurde unter anderem durch das START-Programm des FWF finanziert und ist eine Zusammenarbeit des Departments für Mikrobielle Ökologie mit der University of Arizona, dem Joint Genome Institute und der Veterinärmedizinischen Universität Wien.

Publikation in PLoS Genetics
Penz T, Schmitz-Esser S, Kelly SE, Cass BN, Müller A, Woyke T, Malfatti SE, Hunter MS, Horn M. 2012. Comparative genomics suggests an independent origin of cytoplasmic incompatibility in Cardinium hertigii. PLoS Genetics, in press.

Die Schlupfwespe Encarsia pergandiella, der natürliche Wirt von Cardinium hertigii, bei der Eiablage in eine Schildlaus. Foto: Alexander Wild, Copyright: Department für Mikrobielle Ökologie der Universität Wien

http://www.plosgenetics.org/doi/pgen.1003012

Wissenschaftlicher Kontakt
Univ.-Prof. Dr. Matthias Horn
Universität Wien
Department für Mikrobielle Ökologie
1090 Wien, Althanstraße 14
T +43 1 4277 543 93
horn@microbial-ecology.net

Rückfragehinweis
Mag.a Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Bürgerforschungsprojekt SAIN: Urban Farming gemeinsam voranbringen
18.01.2018 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Projekt "HorseVetMed": Forscher entwickeln innovatives Sensorsystem zur Tierdiagnostik
17.01.2018 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie