Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zuchtkartoffeln mit besonderer Stärke

12.07.2004


Stärkekörnchen im Gewebe einer Kartoffel. Die Farbreaktion mit Jod wird genutzt, um mikroskopisch nachzuweisen, ob die Knolle so wie hier weitgehend frei von Amylose ist.


Rund ein Drittel der in Deutschland angebauten Kartoffeln dient einzig zur Stärkeproduktion. Mit dem weißen Pulver lassen sich Süßspeisen und Soßen andicken. Die Papier- und Textilindustrie nutzt es etwa für klebende Gummierungen oder glattere Webfäden. Was man dem Pulver nicht ansieht: Es enthält zwei Varianten Stärke, Amylose und Amylopektin. Sie unterscheiden sich in ihrem molekularen Aufbau und damit auch in ihren Eigenschaften. Für viele Anwendungen eignet sich Amylopektin, das knapp 80 Prozent der Stärke in der Kartoffel ausmacht, oft besser. Verfahren, um beide Formen zu trennen, sind sehr aufwendig. Daher suchen Forscher seit Jahren nach anderen Wegen.


Gentechnisch veränderte Knollen, die nur Amylopektin bilden, gibt es inzwischen. Als anbaubare Sorte sind sie jedoch noch nicht zugelassen und Transgenes auf dem Acker wird ungern akzeptiert. Forscher des Fraunhofer-Instituts für Molekularbiologie und Angewandte Oekologie IME arbeiten daher an einer Alternative: Sie züchten eine neue Kartoffelsorte klassisch. Gefördert wird das Verbundprojekt von der Fachagentur für nachwachsende Rohstoffe (FNR). »Aus der Gentechnik wissen wir, dass nur ein einziges Gen ausgeschaltet werden muss, damit die Kartoffel keine Amylose mehr bildet«, sagt Jost Muth vom IME. Dazu behandeln die Forscher Kartoffelsamen mit dem Stoff Ethylmethansulfonat, einer Substanz, die seit langem in der Züchtung eingesetzt wird. Sie erzeugt zufällige Punktmutationen im Erbgut. Diese analysieren die Wissenschaftler und wählen Pflanzen aus, deren »Amylose-Gen« beschädigt ist, um sie weiter zu züchten. Ein Problem dabei ist, dass die typische europäische Kartoffel vier Kopien des Gens trägt, die meist nicht ganz identisch aussehen. »Um Veränderungen des Gens überhaupt nachweisen zu können, mussten wir daher erst Kartoffeln finden, bei denen die Kopien gleich aussehen«, sagt Muth. »Nur diese Kartoffeln züchten und mutieren wir weiter.«

Die vielversprechendsten Kandidaten sind nun bei einer kooperierenden Biotechfirma, die durch Kreuzung Eigenschaften wie Resistenz und Ertrag optimieren wird. Die IME-Forscher analysieren das Erbgut jeder Pflanzengeneration. Nur Kartoffeln mit je zwei defekten »Amylose-Genen« werden weitergezüchtet, um die Mutation zu erhalten. Die besten unter ihnen werden abschließend gekreuzt. Ein Sechsunddreißigstel ihrer Nachkommen trägt dann vier defekte »Amylose-Gene« und damit die Voraussetzung, nur noch Amylopektin zu bilden. Bis die ersten amylosefreien Zuchtkartoffeln auf dem Acker blühen, rechnen die Forscher allerdings noch mit einigen Jahren.


Ansprechpartner:

Dr. Jost Muth
Telefon 0241 / 80-28119, Fax -20145
Dr. Dirk Prüfer
Telefon 0241 / 80-28121, Fax -368
Fraunhofer-Institut für Molekularbiologie
und Angewandte Oekologie IME
Auf dem Aberg 1
57392 Schmallenberg-Grafschaft

Dr. Jost Muth | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.ime.fraunhofer.de
http://www.fnr.de

Weitere Berichte zu: Amylopektin Gen Kartoffel Kopie Zuchtkartoffeln

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Überraschung im Wald: Bäume tauschen untereinander Kohlenstoff aus
15.04.2016 | Universität Basel

nachricht Ressource Land unter Druck
04.03.2016 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Winzige Mikroroboter, die Wasser reinigen können

Forscher des Max-Planck-Institutes Stuttgart haben winzige „Mikroroboter“ mit Eigenantrieb entwickelt, die Blei aus kontaminiertem Wasser entfernen oder organische Verschmutzungen abbauen können.

In Zusammenarbeit mit Kollegen in Barcelona und Singapur verwendete die Gruppe von Samuel Sánchez Graphenoxid zur Herstellung ihrer Motoren im Mikromaßstab. D

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: Bewegungen in der lebenden Zelle beobachten

Prinzipien der statistischen Thermodynamik: Forscher entwickeln neue Untersuchungsmethode

Ein Forscherteam aus Deutschland, den Niederlanden und den USA hat eine neue Methode entwickelt, mit der sich Bewegungsprozesse in lebenden Zellen nach ihrem...

Im Focus: Faszinierender Blick in den Zellkern

Veröffentlichungen in Nature Communications zur DNA-Replikation

Vor jeder Zellteilung muss die Erbsubstanz kopiert werden. Die Startpunkte der DNA-Verdoppelung in Zellen von Menschen und Mäusen haben Wissenschaftler um...

Im Focus: Dauerbetrieb der Tokamaks rückt näher

Aussichtsreiche Experimente in ASDEX Upgrade / Bedingungen für ITER und DEMO nahezu erfüllt

Die ihrer Natur nach in Pulsen arbeitenden Fusionsanlagen vom Typ Tokamak sind auf dem Weg zum Dauerbetrieb. Alexander Bock, Wissenschaftler im...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

VDE|DGBMT veranstaltet Tagung zur patientennahen mobilen Diagnostik POCT

28.04.2016 | Veranstaltungen

Norddeutsche Herztage: 300 Experten treffen sich in Kiel

28.04.2016 | Veranstaltungen

Landwirtschaft und Lebensmittel - Analytische Chemiker: Wächter über Umwelt und Gesundheit

28.04.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences