Größter molekularer Spin nahe eines Quantenphasenübergangs gefunden

Prof. Dr. Jürgen Schnack Foto: Universität Bielefeld

Ein internationales Forschungsteam um Professorin Dr. Annie Powell, Chemikerin am Karlsruher Institut für Technologie (KIT), und Professor Dr. Jürgen Schnack, Physiker an der Universität Bielefeld, hat ein neues magnetisches Molekül synthetisiert. Es hat nachgewiesen, dass dieses den größten bisher erreichten Grundzustandsspin aufweist und stellt seine neuen Erkenntnisse heute (26.02.2018) im neuen Nature Partner Journal „npj Quantum Materials“ vor.

An den Untersuchungen beteiligt waren neun Wissenschaftlerinnen und Wissenschaftler der Universität Bielefeld, des KIT, der Universität Magdeburg sowie der Università di Modena e Reggio Emilia (Italien).

Jedes einzelne Elektron besitzt einen quantenmechanischen Eigendrehimpuls, auch Spin genannt. Das neue, an der Universität Bielefeld modellierte und am KIT synthetisierte magnetische Molekül weist im Grundzustand einen Spin auf, der so groß ist wie der von 120 Elektronen zusammen. Es handelt sich demnach um den größten Spin, der bisher in einem einzelnen Molekül erreicht wurde. Magnetische Moleküle sind Moleküle, die magnetische Ionen wie Eisen oder Gadolinium enthalten. Das magnetische Molekül, das die Forschungsgruppe synthetisiert und untersucht hat, wird „Fe10Gd10“ abgekürzt. Es hat die geometrische Struktur eines Torus, ähnlich der eines Rettungsrings.

„Im Fall des neuen Moleküls kommt eine unerwartete Eigenschaft hinzu, die auch ganz andere Anwendungen ermöglicht“, sagt Jürgen Schnack. Die Wissenschaftlerinnen und Wissenschaftler des interdisziplinären Forschungsprojektes fanden nämlich weiter heraus: Es gibt einen sogenannten Quantenphasenübergang, der die Eigenschaft des Moleküls stark beeinflusst.

Bei Quantenphasenübergängen ändern Substanzen ihr Verhalten an sogenannten quantenkritischen Punkten fundamental. Bekannt sind „klassische“ Phasenübergänge zum Beispiel bei Wasser, das bei Überschreiten einer bestimmten Temperatur zu kochen beginnt. Quantenphasenübergänge finden beim absoluten Temperaturnullpunkt statt. In dem neu synthetisierten Molekül Fe10Gd10 sind beim Übergang zehntausende Zustände entartet.

Das heißt, sie haben die gleiche Energie. Auf dieser absolut ebenen Energiefläche kann ohne Energieaufwand zwischen den einzelnen Zuständen hin- und hergeschaltet werden. Die thermodynamische Größe An den Untersuchungen beteiligt waren neun Wissenschaftlerinnen und Wissenschaftler der Universität Bielefeld, des KIT, der Universität Magdeburg sowie der Università di Modena e Reggio Emilia (Italien).

Entropie nimmt in so einer Situation riesige Werte an. „Es ist, als würde man auf einem hohen, spitzen Berg stehen“, erklärt Annie Powell. „Eine kleine Änderung der äußeren Bedingungen, zum Beispiel des Drucks, reicht aus und es geht sofort steil abwärts.“ In Zukunft soll daher untersucht werden, wie sich das Molekül Fe10Gd10 durch äußeren Druck über den quantenkritischen Punkt führen lässt.

Jürgen Schnack forscht seit etwa 20 Jahren in weltweiten Verbünden an magnetischen Molekülen. Das Ziel der Erforschung magnetischer Moleküle besteht darin, sie passgenau für verschiedene Zwecke zu konstruieren, z.B. als Nano-Datenspeicher oder als Kühlmoleküle.

Originalveröffentlichung:
Amer Baniodeh, Nicola Magnani, Yanhua Lan, Gernot Buth, Christopher E. Anson, Johannes Richter, Marco Affronte, Jürgen Schnack, Annie K. Powell, High Spin Cycles: Topping the Spin Record for a Single Molecule verging on Quantum Criticality, npj quantum materials, doi:10.1038/s41535-018-0082-7, erschienen am 26. Februar 2018, Link: https://www.nature.com/articles/s41535-018-0082-7

https://www.nature.com/articles/s41535-018-0082-7
http://obelix.physik.uni-bielefeld.de/~schnack/index-research.html
https://ekvv.uni-bielefeld.de/blog/uniaktuell/entry/kühlen_mit_molekülen

Media Contact

Sandra Sieraad idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Aufbruchstimmung in der Alzheimer-Forschung

Bei der Alzheimer Erkrankung lagern sich Eiweiße im Gehirn ab und schädigen es. Prof. Dr. Susanne Aileen Funke von der Hochschule Coburg hat eine Methode gefunden, die solche gefährlichen Eiweißverbindungen…

Chronische Entzündungen durch Ansätze aus der Natur behandeln

Die interdisziplinäre Forschungsgruppe „nature4HEALTH“ hat jüngst ihre Arbeit aufgenommen. Das Team der Friedrich-Schiller-Universität Jena und des Universitätsklinikums Jena entwickelt ganzheitliche naturstoffbasierte Therapieansätze für die Behandlung chronisch-entzündlicher Erkrankungen. Chronische Entzündungen sind…

Antivirale Beschichtungen und Zellkultur-Oberflächen maßgeschneidert herstellen

Verfahren der Kieler Materialwissenschaft ermöglicht erstmals umfassenden Vergleich von Beschichtungen für biomedizinische Anwendungen. Der Halteknopf im Bus, die Tasten im Fahrstuhl oder die Schutzscheibe am Anmeldetresen in der Arztpraxis: Täglich…

Partner & Förderer