Forscher entdecken spektakuläre Vielfalt nanoporöser Kristalle

Nanoporöse Materialien, wie zum Beispiel Zeolithe oder metall-organische Gerüstverbindungen, enthalten Poren mit Durchmessern von weniger als einem Millionstel eines Millimeters, in denen Moleküle gespeichert oder in andere Moleküle umgewandelt werden können.

Sie sind für unsere Gesellschaft von großer Bedeutung und finden vielfältige Anwendungen, etwa als umweltfreundliche Katalysatoren zur Beschleunigung der chemischen Umwandlung von Molekülen in technisch wertvolle Endprodukte und als molekulare „Schwämme“ zur Reinigung von Gasen und Flüssigkeiten, zur Aufnahme von Kohlendioxid oder für medizinische Anwendungen.

Die Entwicklung und weitere Verbesserung solcher Anwendungen hängt entscheidend vom Verständnis der Mechanismen des Molekültransportes in den Nanoporen ab. So wird zum Beispiel die Geschwindigkeit chemischer Umwandlungen in den Nanoporen ganz wesentlich von der Transportgeschwindigkeit bestimmt.

Da nanoporöse Kristalle aus identischen Bausteinen zusammengesetzt sind, haben die Forscher bisher angenommen, dass die Mechanismen und die Geschwindigkeit des Molekültransports für die verschiedenen Kristalle ein und derselben Familie identisch sind.

In ihren Untersuchungen zur Gewinnung von Bio-Alkoholen als Alternative für Erdöl-Folgeprodukte arbeitete das belgische Forscherteam um Prof. Joeri Denayer und Dr. Julien Cousin-Saint-Remi (Freie Universität Brüssel) mit den Physiker-Kollegen der Universität Leipzig um Prof. Dr. Jörg Kärger und Prof. Dr. Jürgen Haase zusammen. Sie wollten grundlegende Einsicht in die Transportmechanismen von Alkohol-Molekülen in nanoporösen Festkörpern gewinnen.

Durch den Einsatz hochentwickelter Techniken der Mikro-Bildgebung, wie sie von den Leipziger Physikern um Kärger und Haase entwickelt wurden, konnte auf diesem Wege nachgewiesen werden, dass sich bei scheinbar identischen Kristallen die Transportgeschwindigkeiten um Größenordnungen unterscheiden können.

Diese Beobachtung lässt nicht nur die gegensätzlichen, einander oft widersprechenden Ergebnisse, von denen in der Vergangenheit berichtet wurde, in einem völlig anderen Licht erscheinen. Sie ist auch für die Entwicklung effizienterer chemischer Prozesse von großer Bedeutung.

„Die klassischen Methoden zur Untersuchung des Molekültransports gestatten es lediglich, das Transportverhalten gemittelt über viele Kristalle zu betrachten. Das kann aber zu völlig falschen Schlussfolgerungen in Hinblick auf die tatsächlich vorherrschenden Transportmechanismen und die ihnen zugrunde liegenden Materialeigenschaften führen“, erklärt Kärger.

Die Ergebnisse dieser Zusammenarbeit helfen so anderen Forschern, die Diffusionsmechanismen in nanoporösen Materialien besser zu verstehen. Die detailgetreue Erforschung einzelner Kristalle ist somit ein wichtiger Beitrag zur Entwicklung neuer und besserer Materialien.

Originaltitel der Veröffentlichung in „Nature Materials“: „The role of crystal diversity in understanding mass transfer in nanoporous materials“ (Die Rolle der Kristall-Diversität zum Verständnis des Massentransports in nanoporösen Materialien) doi:10.1038/nmat4510

Weitere Informationen:

Prof. Dr. Jörg Kärger
Institut für Experimentelle Physik I
Telefon: +49 341 97-32502
E-Mail: kaerger@physik.uni-leipzig.de

Prof. Dr. Jürgen Haase
Institut für Experimentelle Physik II
Telefon: +49 341 97-32601
E-Mail: j.haase@physik.uni-leipzig.de

Dr. Julien Cousin-Saint-Remi
Freie Universität Brüssel
Telefon: +32 2 629 33 18
E-Mail: jcousins@vub.ac.be

http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4510.html

Media Contact

Susann Huster Universität Leipzig

Weitere Informationen:

http://www.uni-leipzig.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Forschende enthüllen neue Funktion von Onkoproteinen

Forschende der Uni Würzburg haben herausgefunden: Das Onkoprotein MYCN lässt Krebszellen nicht nur stärker wachsen, sondern macht sie auch resistenter gegen Medikamente. Für die Entwicklung neuer Therapien ist das ein…

Mit Kleinsatelliten den Asteroiden Apophis erforschen

In fünf Jahren fliegt ein größerer Asteroid sehr nah an der Erde vorbei – eine einmalige Chance, ihn zu erforschen. An der Uni Würzburg werden Konzepte für eine nationale Kleinsatellitenmission…

Zellskelett-Gene regulieren Vernetzung im Säugerhirn

Marburger Forschungsteam beleuchtet, wie Nervenzellen Netzwerke bilden. Ein Molekülpaar zu trennen, hat Auswirkungen auf das Networking im Hirn: So lässt sich zusammenfassen, was eine Marburger Forschungsgruppe jetzt über die Vernetzung…

Partner & Förderer