Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von Sonnen- zu Sternflecken - Astronomen vermessen erstmals Magnetfeld eines Sternflecks

06.12.2012
Forschern am Leibniz-Institut für Astrophysik Potsdam (AIP) ist es gelungen, das Magnetfeld eines dunklen Sternflecks zu bestimmen. Damit konnten sie den lange erwarteten Nachweis erbringen, dass Sternflecken ebenso wie Sonnenflecken Orte besonders hoher Magnetfelddichte sind: das Feld erreicht lokal eine etwa fünfzig- bis hundertfach größere Stärke als auf der restlichen Oberfläche des Sterns.

Der Nachweis wurde möglich durch die am AIP entwickelte neue tomografische Analysesoftware iMap. Die Arbeit des Wissenschaftler-Teams um Thorsten Carroll und Klaus G. Strassmeier wurde diese Woche als Highlight in der Fachzeitschrift Astronomy & Astrophysics publiziert.


Magnetfeld- und Temperaturkarte der Oberfläche des Sternes V410 Tauri. Der Stern ist eine „junge Sonne“ von wenigen Millionen Jahren.

Illustration: AIP


Magnefeldextrapolation von V410 Tauri.

Animation: AIP

Magnetfelder beeinflussen die Strahlungscharakteristik von Sternen durch Polarisation von Licht: die elektromagnetischen Wellen werden in ihrer Schwingungsrichtung beeinflusst, dies wiederum prägt das Spektrum des Sterns. Aus seinem charakteristischen „Fingerabdruck“ im Spektrum kann mittels hochauflösender Spektroskopie im polarisierten Licht auf die Geometrie des lokalen Magnetfeldes an der Sternoberfläche zurückgeschlossen werden.

Da Sternflecken dunkel und damit etwa Tausend bis Zweitausend Grad kühler als ihre Umgebung sind, stellt ihre Beobachtung für die Spektroskopie jedoch eine besondere Herausforderung dar. Klaus G. Strassmeier: „Wenn ein Ort auf der Oberfläche am Stern dunkel ist, kommt von dort kein oder nur wenig Licht im Spektrographen an und die über die ganze Sternscheibe rekonstruierte Magnetfeldverteilung wird verfälscht oder sogar unterdrückt.“

Tomografische Methoden wie sie auch in der Medizin zum Einsatz kommen, ermöglichen eine genaue Vermessung der Oberfläche eines rotierenden Sterns. In der Kombination zahlreicher Momentaufnahmen eines rotierenden Sterns ergibt sich ein hochqualitatives Gesamtbild. Das AIP ist eines der wenigen Institute weltweit, die astronomische tomografische Techniken entwickeln und nutzen.

Die neue Tomografiesoftware iMap ermöglicht es den Forschern, aus den Momentaufnahmen des Lichts simultan die Temperatur- und Magnetfeldverteilungen auf der Oberfläche des Sterns rekonstruieren. Diese gleichzeitige Betrachtung von Temperatur und Feld zeigt Magnetfelder auch für wenig Licht, also selbst für dunkle Sternflecken auf. Die Berechnung ist höchst aufwändig, so Thorsten Carroll: „Um diesen komplexen Prozess rechnerisch überhaupt bewältigen zu können trainieren wir ein künstliches neuronales Netzwerk, das die Rechengeschwindigkeit unserer Simulationen um ein Tausendfaches beschleunigt.“ Dies macht die Software so stark, dass selbst für weit entfernte Sterne, für die das Hintergrundrauschen das eigentliche beobachtbare Signal übersteigt, magnetische Oberflächenkarten von Sternen erstellt werden können.

Bei dem ersten von den Forschern vermessenen Stern handelt es sich um den sonnenähnlichen Stern V410 Tauri, der mit dem Spektropolarimeter Espadons am 3,6-Meter Spiegel des Canada-France-Hawaii Teleskop am Mauna Kea beobachtet wurde. Als nächstes wollen die Astronomen Oberflächen-Magnetfelder von weiteren sonnenähnlichen Sternen bestimmen. Dies ist insbesondere interessant für Sterne mit Planetensystemen, denn das Magnetfeld eines Sterns hat einen entscheidenden Einfluss auf die Entwicklung eines bewohnbaren Planetensystems.

Für die tomographische Erfassung der vielen lichtschwachen Sterne in unserer Galaxie warten die Forscher bereits ungeduldig auf Spektropolarimeter der nächsten Generation wie das in Potsdam entwickelte PEPSI-Instrument, welches ab 2014 am Large Binocular Telescope, dem weltgrößten optischen Teleskop auf dem 3.200 Meter hohen Mt. Graham in Arizona im Einsatz sein und die Anzahl magnetisch vermessbarer Sterne verzehnfachen wird.

Veröffentlichung: T. A. Carroll, K. G. Strassmeier, J. B. Rice, A. Künstler: The magnetic field topology of the weak-lined T Tauri star V410 Tauri. New strategies for Zeeman-Doppler imaging. In: Astronomy & Astrophysics, 584, A95.
Wissenschaftlicher Kontakt: Dr. Thorsten A. Carroll, 0331-7499-539, tcarroll@aip.de

Pressekontakt: Kerstin Mork, 0331-7499-469, presse@aip.de

Das Leibniz-Institut für Astrophysik Potsdam (AIP) beschäftigt sich vorrangig mit kosmischen Magnetfeldern und extragalaktischer Astrophysik. Einen weiteren Schwerpunkt bildet die Entwicklung von Forschungstechnologien in den Bereichen Spektroskopie, robotische Teleskope und E-Science. Seinen Forschungsauftrag führt das AIP dabei im Rahmen zahlreicher nationaler, europäischer und internationaler Kooperationen aus. Das Institut ist Nachfolger der 1700 gegründeten Berliner Sternwarte und des 1874 gegründeten Astrophysikalischen Observatoriums Potsdam, das sich als erstes Institut weltweit ausdrücklich der Astrophysik widmete. Seit 1992 ist das AIP Mitglied der Leibniz-Gemeinschaft.

Kerstin Mork | idw
Weitere Informationen:
http://www.aip.de
http://dx.doi.org/10.1051/0004-6361/201220215

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Spiralarme nicht nur in Galaxien
30.09.2016 | Max-Planck-Institut für Radioastronomie

nachricht Rosetta-Team verabschiedet sich mit neuem Kometen-Sound
30.09.2016 | Technische Universität Braunschweig

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Zielsichere Roboter im Mikromaßstab

Dank einer halbseitigen Beschichtung mit Kohlenstoff lassen sich Mikroschwimmer durch Licht antreiben und steuern

Manche Bakterien zieht es zum Licht, andere in die Dunkelheit. Den einen ermöglicht dieses phototaktische Verhalten, die Sonnenenergie möglichst effizient für...

Im Focus: Experimentalphysik - Protonenstrahlung nach explosiver Vorarbeit

LMU-Physiker haben mit Nanopartikeln und Laserlicht Protonenstrahlung produziert. Sie könnte künftig neue Wege in der Strahlungsmedizin eröffnen und bei der Tumorbekämpfung helfen.

Stark gebündeltes Licht entwickelt eine enorme Kraft. Ein Team um Professor Jörg Schreiber vom Lehrstuhl für Experimentalphysik - Medizinische Physik der LMU...

Im Focus: Der perfekte Sonnensturm

Ein geomagnetischer Sturm hat sich als Glücksfall für die Wissenschaft erwiesen. Jahrzehnte rätselte die Forschung, wie hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden. Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam mit einem internationalen Team eine Erklärung gefunden: Entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits: „Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen.“ Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“

Ein geomagnetischer Sturm am 17. Januar 2013 hat sich als Glücksfall für die Wissenschaft erwiesen. Der Sonnensturm ermöglichte einzigartige Beobachtungen, die...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: Neuer Schalter entscheidet zwischen Reparatur und Zelltod

Eine der wichtigsten Entscheidungen, die eine Zelle zu treffen hat, ist eine Frage von Leben und Tod: kann ein Schaden repariert werden oder ist es sinnvoller zellulären Selbstmord zu begehen um weitere Schädigung zu verhindern? In einer Kaskade eines bisher wenig verstandenen Signalweges konnten Forscher des Exzellenzclusters für Alternsforschung CECAD an der Universität zu Köln ein Protein identifizieren (UFD-2), das eine Schlüsselrolle in dem Prozess einnimmt. Die Ergebnisse wurden in der Fachzeitschrift Nature Structural & Molecular Biology veröffentlicht.

Die genetische Information einer jeden Zelle liegt in ihrer Sequenz der DNA-Doppelhelix. Doppelstrangbrüche der DNA, die durch Strahlung hervorgerufen werden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einzug von Industrie 4.0 und Digitalisierung im Südwesten - Innovationstag der SmartFactoryKL

30.09.2016 | Veranstaltungen

"Physics of Cancer" - Forscher diskutieren über biomechanische Eigenschaften von Krebszellen

30.09.2016 | Veranstaltungen

Das Heidelberg Laureate Forum: Eine Veranstaltung mit Zukunft

29.09.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Industrie 4.0 im Fräsprozess: Flexible, mechatronische Spannsysteme mit aktiver Schwingungsdämpfung

30.09.2016 | Maschinenbau

Rosetta-Team verabschiedet sich mit neuem Kometen-Sound

30.09.2016 | Physik Astronomie

Erster Dörte-Wörner-Innovationspreis für Informatik-Gründer an der h_da vergeben

30.09.2016 | Förderungen Preise